• Title/Summary/Keyword: Kinesin superfamily-associated protein 3 (KAP3)

Search Result 6, Processing Time 0.021 seconds

Kinesin Superfamily-associated Protein 3 (KAP3) Mediates the Interaction between Kinesin-II Motor Subunits and HS-1-associated Protein X-1 (HAX-1) through Direct Binding (Kinesin superfamily-associated protein 3 (KAP3)를 통한 HS-1-associated protein X-1 (HAX-1)과 Kinesin-II의 결합)

  • Jang, Won Hee;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.978-983
    • /
    • 2013
  • Kinesin-II, a molecular motor, consists of two different motor subunits, KIF3A and KIF3B, and one large kinesin superfamily-associated protein 3 (KAP3), forming a heterotrimeric complex. KAP3 is associated with the tail domains of motor subunits. However, its exact role remains unclear. Here, we demonstrated KAP3 binding to the carboxyl (C)-terminal tail region of HS-associated protein X-1 (HAX-1). HAX-1 bound to the C-terminal region of KAP3, but not to KIFs (KIF3A, KIF3B, and KIF5B) and the kinesin light chain (KLC) in the yeast two-hybrid assays. The interaction was further confirmed in the glutathione S-transferase (GST) pull-down assay and by co-immunoprecipitation. Anti- HAX-1 antibody as well as anti-KIF3A antibody co-immunoprecipitated KIF3B and KAP3 from mouse brain extracts. These results suggest that KAP3 could mediate the interaction between Kinesin-II and HAX-1.

Identification of Genes Involved in the Onset of Female Puberty of Rat

  • Eun Jung Choi;Byung Ju Lee
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.319-329
    • /
    • 1999
  • Onset of female puberty follows a series of prepubertal cellular and molecular events including changes of synaptic plasticity, synthetic and releasing activity and gene expression. Dramatic increase of gonadal steroid level is one of the most prominent changes before the onset of puberty. Based on the importance of steroid feedback upon the hypothalamus, we adopted an estrogen sterilized rat (ESR) model where 100 ng of 17$\eta$-estradiol were administered into neonatal pubs for 7 days after birth. To identify genes involved in the onset of female puberty, we applied PCR differential display using RNA samples derived from ESR and control rat hypothalami. About 100 out of more than 1000 RNA species examined displayed differential expression patterns between a 60-day old control rat and ESR. Sequence analysis of differentially amplified PCR products showed homology with genes such as mouse kinesin superfamily-associated protein 3 (KAP3) and several cDNAs previously described by others in mouse and human tissues. Several gene products such as 2-1 and 8-1 corresponded to novel DNA sequences. We analyzed mRNA levels of KAP3, 2-1 and 8-1 genes in the hypothalami derived from neonatal, 6-, 28-, 31-, and 40-day old rats. Northern blot analysis showed that mRNAs of KAP3, 2-1 and 8-1 genes were markedly increased before the initiation of puberty. Neonatal treatment of estrogen clearly inhibited prepubertal increases in KAP3, 2-1 and 8-1 mRNA levels. Therefore, these genes may play important roles in the initiation of hypothalamic puberty. In addition, intracerebroventricular (icv) injection of antisense KAP3 oligodeoxynucleotide (ODN) clearly delayed puberty initiation determined by vaginal opening, which further confirmed that KAP3 plays an important role in the regulation of puberty initiation.

  • PDF

Brain-expressed X-linked 2 Binds to Kinesin Superfamily Protein 3A (Brain-expressed X-linked (Bex) 2와 heterotrimeric kinesin-2의 KIF3A와의 결합)

  • Kim, Mooseong;Jeong, Young Joo;Park, Sung Woo;Seo, Mi Kyoung;Kim, Sang Jin;Lee, Won Hee;Urm, Sang-Hwa;Lee, Jung Goo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.32 no.3
    • /
    • pp.189-195
    • /
    • 2022
  • Kinesin-2 comprises two subfamilies of the heterotrimeric or homodimeric motors found in mammalian cells. Heterotrimeric kinesin-2 consists of kinesin superfamily proteins (KIFs) 3A and 3B and kinesin-associated protein 3 (KAP3), which is a molecular motor protein that moves along microtubules. It plays diverse roles in cargo transport, including anterograde trafficking in cilia, and interacts with many different cargoes and proteins, but their binding proteins have not yet been fully identified. In this study, the yeast two-hybrid assay was used to identify the proteins that interact with the cargo-binding domain (CBD) of KIF3A, and an interaction between KIF3A and brain expressed X-linked 2 (Bex2) was found. Bex2 bound to the CBD-containing C-terminal tail region of KIF3A but did not interact with the same region of KIF3B or KIF5A (a motor protein of kinesin-1). KIF3A interacted with another isoform, Bex1, but did not interact with Bex3. In addition, glutathione S-transferase (GST) pull-downs showed that KIF3A specifically interacts with GST-Bex1 and GST-Bex2 but not with GST alone. When co-expressed in HEK-293T cells, Bex2 co-localized with KIF3A and co-immunoprecipitated with KIF3A and KIF3B but not KIF5B. In combination, these results suggest that Bex2 is capable of binding to heterotrimeric kinesin-2 and may serve as an adaptor protein that links heterotrimeric kinesin-2 with cargo.

The Heterotrimeric Kinesin-2 Family Member KIF3A Directly Binds to Creatine Kinase B (Heterotrimeric kinesin-2의 KIF3A와 creatine kinase B의 결합)

  • Jeong, Young Joo;Park, Sung Woo;Seo, Mi Kyoung;Kim, Sang-Jin;Lee, Won Hee;Kim, Mooseong;Urm, Sang-Hwa;Lee, Jung Goo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.257-265
    • /
    • 2021
  • Heterotrimeric kinesin-2 is a molecular motor protein of the kinesin superfamily (KIF) that moves along a microtubule plus-end directed motor protein. It consists of three different motor subunits (KIF3A, KIF3B, and KIF3C) and a kinesin-associated protein 3 (KAP3) that form a heterotrimeric complex. Heterotrimeric kinesin-2 interacts with many different binding proteins through the cargo-binding domain of the KIF3s. The activity of heterotrimeric kinesin-2 is regulated to ensure that the cargo is directed to the right place at the right time. How this regulation occurs, however, remains in question. To identify the regulatory proteins for heterotrimeric kinesin-2, we performed yeast two-hybrid screening and found a specific interaction with creatine kinase B (CKB), which is the brain isoform of cytosolic creatine kinase enzyme. CKB bound to the cargo-binding domain of KIF3A but did not interact with the KIF3B, KIF5B, or KAP3 in the yeast two-hybrid assay. The carboxyl (C)-terminal region of CKB is essential for the interaction with KIF3A. Another protein kinase, CaMKIIa, interacted with KIF3A, but GSK3a did not interact with KIF3A in the yeast two-hybrid assay. KIF3A interacted with GST-CKB-C but not with GSK-CKB-N or GST alone. When co-expressed in HEK-293T cells, CKB co-localized with KIF3A and co-immunoprecipitated with KIF3A and KIF3B but not KIF5B. These results suggest that the CKB-KIF3A interaction may regulate the cargo transport of heterotrimeric kinesin-2 under energy-compromised conditions in cells.

The Carboxyl-terminal Tail of a Heterotrimeric Kinesin 2 Motor Subunit Directly Binds to β2-tubulin (Heterotrimeric Kinesin 2 모터 단백질의 Carboxyl-말단과 β2-tubulin의 결합)

  • Jeong, Young Joo;Park, Sung Woo;Kim, Sang-Jin;Lee, Won Hee;Kim, Mooseong;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.369-375
    • /
    • 2019
  • Microtubules form through the polymerization of ${\alpha}-$ and ${\beta}-tubulin$, and tubulin transport plays an important role in defining the rate of microtubule growth inside cellular appendages, such as the cilia and flagella. Heterotrimeric kinesin 2 is a molecular motor member of the kinesin superfamily (KIF) that moves along the microtubules to transport multiple cargoes. It consists of two motor subunits (KIF3A and KIF3B) and a kinesin-associated protein 3 (KAP3), forming a heterotrimeric complex. Heterotrimeric kinesin 2 interacts with many different binding proteins through the cargo-binding domains of the KIF3s, but these binding proteins have not yet been specified. To identify these proteins for KIF3A, we performed yeast two-hybrid (Y2H) screening and found a specific interaction with ${\beta}2-tubulin$ (Tubb2), a microtubule component. Tubb2 was found to bind to the cargo-binding domain of KIF3A but did not interact with KIF3B, KIF5B, or kinesin light chain 1 in the Y2H assay. The carboxyl-terminal region of Tubb2 is essential for interaction with KIF3A. Other Tubb isoforms, including Tubb1, Tubb3, Tubb4, and Tubb5, also interacted with KIF3A in the Y2H screening. However, ${\alpha}1-tubulin$ (Tuba1) did not interact with KIF3A. In addition, an antibody to KIF3A specifically co-immunoprecipitated the KIF3B and KAP3 associated with Tubb2 from mouse brain extracts. In combination, these results suggest that a heterotrimeric kinesin 2 motor protein is capable of binding to tubulin and may transport it in cells.

Effects of Polychlorinated Biphenyls on the Expression of KAP3 Gene Involved in the 'Critical Period' of Rat Brain Sexual Differentiation

  • Lee, Chae-Kwan;Kang, Han-Seung;June, Bu-ll;Lee, Byung-Ju;Moon, Deog-Hwan;Kang, Sung-Goo
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.327-331
    • /
    • 2001
  • There is a critical developmental period during which brain sexual differentiation proceeds irreversibly under the influence of gonadal hormone. Recently, kinesin superfamily-associated protein 3 (KAP3) gene expressed during the 'critical period' of rat brain differentiation was identified by us (Choi and Lee, 1999). KAP3 functions as a microtubule-based motor that transports membranous organelles anterogradely in cells, including neurons (Yamazaki et al., 1996). mRNA level of KAP3 gene markedly increased before the initiation of puberty. Neonatal treatment of estrogen clearly inhibited the prepubertal increase in KAP3 mRNA level (Choi and Lee, 1999). In the present study, we aimed to investigate the effects of polychlorinated biphenyls (PCBs), as endocrine disruptors (EDs) on the expression of KAP3 gene during the 'critical period' of rat brain development. In our data, PCBs significantly decreased the expression of KAP3 gene in the fetal (day 17) and the neonatal (day 6 after birth in) male and female rat brains. The body weight and the breeding ability were significantly decreased in the PCBs-exposed rats compared with the control. These results showed that PCBs affect the transcriptional level of brain sexual differentiation related gene, KAP3, in the fetal and the neonatal rat brains. The maternal exposure to the PCBs may lead to toxic response in embryonic brain sexual differentiation and breeding ability after sexual maturation. This study indicates that KAP3 gene may be useful as a gene marker to analyze the molecular mechanism of toxic response in the animal brain development and sexual maturation exposed to PCBs.

  • PDF