• Title/Summary/Keyword: Kinematically Admissible

Search Result 74, Processing Time 0.021 seconds

Analysis of axisymmetric closed-die forging using UBET (UBET를 이용한 축대칭 형단조 해석)

  • 김동원;김헌영;신수정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.337-344
    • /
    • 1989
  • The upper bound elemental technique (UBET) is used to simulate the bulk flow characteristics in axisymmetric closed die forging process. Internal flow inside the cavity is predicted using a kinematically admissible velocity field that minimizes the rate of energy consumption. Application of the technique includes an assessment of the formation of flash and of degree of filling in rib-web type cavity using billets with various aspect rations. The technique considering bulging effect is performed in an incremental manner. The results of simulation show how it can be used for the prediction of forging load, metal flow, and free surface profile. The experiments are carried out with plasticine. There are good agreements in forging load and material flow in cavity between the simulation and experiment. The developed program using UBET can be effectively applied to the various forging problems.

Upper Bound Analysis on the Forging of Gear-Like Components (기어류 부품의 단조에 관한 상계해석)

  • Min, G.S.;Park, J.U.;Lee, H.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.102-112
    • /
    • 1997
  • This paper describes the method that can construct kinematically admissible velocity fields for forging of gear-like components which have tooth shape around the cylinder. The kinematically admissible velo- city fields for the various gear-like components, involute spur gear, trapezoidal spline, square spline, ser- ration and trochoidal gear, were constructed by pilling up the velocity components according to the shape of tooth and billet. The billets, of hollow and solid, were Al 2218 and 2024. To verify the method, the analyses and experiments were carried out and compared with each other. For analyses, the half pitches of com- ponents were divided into several deformation regions based on their tooth profile. A neutral surface was used to represent the inner flow of material during forging. Its location varied with the energy optimazation and its contour varied with the number of teeth. In experiment, the contour of material filling up the tooth zone is hyperbolic curve caused by the frictional drag on the interface of die-wall/workpiece but, in the analysis, it is an arc which retains the same contour during all forging operation.

  • PDF

Investigation of the Final-Stage Forward Extrusion of Regular Polygonal-Shaped Bars From Circular Billets Using Square Die (평금형을 이용한 원형 소재에서 다각형바의 최종단계 전방압출에 관한 연구)

  • 김동권;조종래;배원병
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.59-69
    • /
    • 1995
  • A simple kinematically admissible velocity field is proposed to determine the final-stage extrusion load and the average extruded length in the square-die forward extrusion of regular polygonal-shaped bars from circular billets. From the proposed velocity field, the upper-bound extrusion load and the average extruded length are determined by minimizing the total power consumption with respect to four parameters. Experiments have been carried out with hard solder billets at room temperature. The theoretical predictions of the extrusion load are in good agreements with the experimental results and there is generally reason able agreement in average extruded length between theory and experiment.

  • PDF

An Analysis of the Square Die Extrusion of Non-Axisymmetric Bars from Circular Billets at Final-Stage (원형 소재에서 비축대칭 봉재의 최종단계 평금형 압출 해석)

  • 김동권;배원병;김영호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.143-149
    • /
    • 1995
  • A simple kinematically admissible velocity field is proposed to drtermine the final-stage extrusion load and the average extruded length in the square-die forward extrusion of non-axisymmetric bars from circular billets. The proposed velocity field is applied to the square-die extrusion of trochoidal gear-shaped bars and rectangular-shaped bars, the profile function of a rectangular being approximated by using a Fourier series. Experiments have been carried out with hard solder billets at room temperature. The theoretical predictions of the extrusion load are in good agreements with the experimental results and there is generally reasonable agreements in average extruded length between theory and experiment.

  • PDF

An Upper Bound Analysis of the Final-Stage Square Die Extrusion of the Non-Axisymmetric Bars (비축대칭 형상을 가진 제품의 최종단계 평금형 압출에 관한 상계해석)

  • Kim, Dong-Kwon;Bae, Won-Byong;Kim, Young-Ho
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.390-397
    • /
    • 1995
  • A simple kinematically admissible velocity field is proposed to determine the final-stage extrusion load and the average extruded length in the square-die forward extrusion of non-axisymmetric bars from circular billets. The proposed velocity field is applied to the square-die extrusion of trochoidal gear-shaped bars and rectangular-shaped bars. The profile function of a rectangle is approximated by using a Fourier series. Experiments have been carried out with hard solder billets at room temperature. The theoretical predictions of the extrusion load are in good agreements with the experimental results and there is generally reasonable agreements in average extruded length between theory and experiment.

  • PDF

Closed-Die Forging Analysis of Clutch Teeth Using An Upper Bound Elemental Technique (상계요소법에 의한 클러치 치형의 밀폐단조해석)

  • 양정호;이상태;김용조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.134-138
    • /
    • 1996
  • A simple kinematically admissible velocity field for closed-die forging of clutch teeth is analysed which takes account of the profiled teeth chosen kinematically by approximating these as straight taper teeth. The upper bound load and the deformed configurations are predicted by the velocity field at varying punch movements considering differing frictional factors. Experiments were carried out using a model material of plasticine at room temperature where talcum powder was used as a lubricant. The theoretical predictions of the forging load and the relative pressures are found to be in reasonably good agreement with the experimental results.

  • PDF

An Upper-Bound Analysis of the Square-Die Forward Extrusion of Regular Polygonal-Shaped Tubes from hollow-Cylindrical Billets at Final Stage (중공 원형 소재로부터 다각형 튜브 제품의 평금형 전방 압출에 대한 최종단계의 상계해석)

  • Kim, Dong Kwon;Cho, Jong Rae;Bae, Won Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.91-97
    • /
    • 1995
  • In this study, a deformation model for the regular polygonal-shaped tubes from hollow-cylindrical billets is proposed and a kinematically admissible velocity field is obtained from this deformation model. The final stage upper-bound extrusion load and the average extruded length are determined by minimizing the total power consumption with respect to chosen parameters. Experiments have been carried out with hard solder billets at room temperature. The theoretical predictions of the extrusion load are in good agreements with the experimental results and there is generally reasonable agreement in average extruded height between theory and experiment.

  • PDF

Upper and Lower Bound Solutions for Pile-Soil-Tunnel Interaction (한계해석법에 의한 파일-지반-터널 상호작용 해석)

  • Lee Yong-Joo;Shin Jong-Ho
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.77-86
    • /
    • 2005
  • In urban areas, new tunnel construction work is often taking place adjacent to existing piled foundations. In this case, careful assessment for the pile-soil-tunnel interaction is required. However, research on this topic has not been much reported, and currently only limited information is available. In this study, the complex pile-soil-tunnel interaction is investigated using the upper and lower bound methods based on kinematically possible failure mechanism and statically admissible stress field respectively. It is believed that the limit theorem is useful in understanding the complicated interaction behaviour mechanism and applicable to the pile-soil-tunnel interaction problem. The results are compared with numerical analysis. The material deformation patterns and strain data from the FE output are shown to compare well with the equivalent physical model tests. Admissible stress fields and the failure mechanisms are presented and used to develop upper and lower bound solutions to assess minimum support pressures within the tunnel.

  • PDF

An Upper Bound Analysis of the Three-Dimensional extrusion of Shapes with the Use of Dual Stream Functions( I ) (유선함수를 이용한 3 차원압출의 상계해석)

  • 김희송;조용이
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.4
    • /
    • pp.85-94
    • /
    • 1992
  • This paper, discribes analysis of theree - dimensional extrusion with the use of dual stream functions, By this method admissible velocity fields for the extrusion of three- dimensional flow was newly derived kinematically. For square section the extrusion pressure was calculated by numerical solution program which was based on the upper bound analysis. The relationship between relative extrusion pressure and reduction of area, relative die length and constant friction factors were successfully calculated which was newly developed in this study. The results could be applied to design extrusion die.

  • PDF