• Title/Summary/Keyword: Kinematical

Search Result 220, Processing Time 0.029 seconds

A 3D FEA Model with Plastic Shots for Evaluation of Peening Residual Stress due to Multi-Impacts (다중충돌 피닝잔류응력 평가를 위한 소성숏이 포함된 3차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyungy-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.642-653
    • /
    • 2008
  • In this paper, we propose a 3-D finite element (FE) analysis model with combined physical behavior and kinematical impact factors for evaluation of residual stress in multi-impact shot peening. The FE model considers both physical behavior of material and characteristics of kinematical impact. The physical parameters include elastic-plastic FE modeling of shot ball, material damping coefficient, dynamic friction coefficient. The kinematical parameters include impact velocity and diameter of shot ball. Multi-impact FE model consists of 3-D symmetry-cell. We can describe a certain repeated area of peened specimen under equibiaxial residual stress by the cell. With the cell model, we investigate the FE peening coverage, dependency on the impact sequence, effect of repeated cycle. The proposed FE model provides converged and unique solution of surface stress, maximum compressive residual stress and deformation depth at four impact positions. Further, in contrast to the rigid and elastic shots, plastically deformable shot produces residual stresses closer to experimental solutions by X-ray diffraction. Consequently, it is confirmed that the FE model with peening factors and plastic shot is valid for multi-shot peening analyses.

A Kinematical Analysis of the Kenmotsu on the Parallel Bars (평행봉 Kenmotsu 동작의 운동학적 분석)

  • Kong, Tae-Ung;Kim, Young-Sun;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.61-70
    • /
    • 2005
  • The purpose of study was to investigate the kinematic variables of Kenmotsu motion in Parallel bars. To this study, by 3 dimensional kinematical analysis of 4 male national gymnasts participants in the 28th Athens Olympic Game in 2004, kinematic data collected using video camera. Coordinate data were smoothed by using a fourth-order Butterworth low pass digital filter with cutoff frequency of 6Hz. The conclusions were as follows. 1. In P2, because the constrained swing movement made the movement of a rising back difficult7, the movements of Reg. were performed at low position after Air phase. 2. In E5 event, for the shake of a stable handstand and applied techniques like a Belle(E-value), a Belle Piked(super E-value), a vertical velocity in E2, a horizontal velocity in E3 and a vertical velocity in E4 were necessary for high velocities. 3. In E4 event, it was appeared that for a flexible body's movement of a vertical up-flight, the large angle of the shoulder joint and the flexion & extension of the hip joint were necessary in Air phase and a long flight time and vertical displacement made Reg. movements stable at the high position.

Kinematical Analysis of El-grip swing with 1turn to el-grip in horizontal bar (철봉 어깨 틀어 휘돌아 다시 잡기(el-grip swing with one turn to el-grip) 동작의 운동학적 분석)

  • Kim, Jae-Phil
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.51-62
    • /
    • 2003
  • This study was attempted to kinematical characteristics of the El-grip swing with 1turn to el-grip in elite horizontal bar for the purpose of improving performance. The subjects were three males who were 2002 Busan Asian Games in men's team. The three dimensional motion analysis with DLT method was executed using three video cameras of analyzing the actual competition situation. In point of analyzing the actual competition situation, it is expected that gymnastics and coaches have the effective informations, and the following conclusion had resulted. 1. In case of release, It is impotant to make fast horizontal velocity of CM, high vertical position of CM, large hip and shoulder angle. Also It should be performed release motion of trunk rotation angle(+). 2. During LHR the action should be made at higher position than the CM and the shoulder joint is moving within $127{\pm}16.82$. It is important to make large lunk rotation angle. 3. During Hop, the RHR motion should be done in high position with short time and fast twisting action and to reduce the vertical speed is important.

Dynamic Modeling of Planar System Consisting of Two Flexible Links and Experiment (두 개의 유연 링크로 이루어진 2차원 구조물의 동적 모델링 및 실험)

  • Choi, Min Seop;Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.865-874
    • /
    • 2016
  • This research is concerned with the experimental investigation on the vibrations of a flexible two-link system for verifying the theoretical result from simplified equations of motion for the system along with the kinematical synthesis are proposed to simulate the elastic vibrations of a previous study. The structure consists of flexible two-links; The link 2 is attached to the end of the link 1. The link 1 is made of composite fiber reinforced polymer and the link 2 is an aluminum beam. In order to verify the theoretical result, a flexible two-link system operated by the AC and RC servo motors was constructed. Experimental results show that the dynamic modeling approach and the kinematical synthesis proposed in this paper are effective.

Kinematical Investigation and Geometry Modeling of the Perfect Involute Bevel Gearsets (완전한 인볼류트 베벨기어쌍의 기구학적 고찰 및 형상 모형화)

  • Park, N.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.46-56
    • /
    • 1995
  • As demands on the precision bevel gears are increased in the related industry, the exact kinematical investigations of a pair of spherical involute bevel gears are required for the computer aided design. The exact angular velocity ratio based on the characteristics of the spherical involute tooth is derived and verified from the relationship between rotational angles. Elementary kinematics of the gearsets is investigated by applying the transformation of the coordinate systems. The tooth contact lines based on logarithmic tooth-wise curve are examines in three dimentional space. Contact ratio is formulated and simulated according to the system parameters such as shaft angles, pressure angle, and spiral angles. The condition of teeth interference is dervied and the critical numbers of gear teeth are calculated. The whole surface geometry of a spiral bevel gearsets are discretized and visualized by a computer graphic tool.

  • PDF

A new mindlin FG plate model incorporating microstructure and surface energy effects

  • Mahmoud, F.F.;Shaat, M.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.105-130
    • /
    • 2015
  • In this paper, the classical continuum mechanics is adopted and modified to be consistent with the unique behavior of micro/nano solids. At first, some kinematical principles are discussed to illustrate the effect of the discrete nature of the microstructure of micro/nano solids. The fundamental equations and relations of the modified couple stress theory are derived to illustrate the microstructural effects on nanostructures. Moreover, the effect of the material surface energy is incorporated into the modified continuum theory. Due to the reduced coordination of the surface atoms a residual stress field, namely surface pretension, is generated in the bulk structure of the continuum. The essential kinematical and kinetically relations of nano-continuums are derived and discussed. These essential relations are used to derive a size-dependent model for Mindlin functionally graded (FG) nano-plates. An analytical solution is derived to show the feasibility of the proposed size-dependent model. A parametric study is provided to express the effect of surface parameters and the effect of the microstructure couple stress on the bending behavior of a simply supported FG nano plate.

Kinematical Analysis of Up-Down Motion in Ski Simulator (스키 시뮬레이터 업-다운 동작의 운동학적 분석)

  • Nam, Chang-Hyun;Woo, Byung-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.41-49
    • /
    • 2007
  • This study was to investigate the kinematical analysis using ski simulator. Twelve people(six skilled, six unskilled) participated in the experiment. Each phase of motion time was slight differences between the skilled group and the unskilled group but not significant difference in statistics. In displacement of vertical on COG(Center of Gravity), left and right down motion showed significant difference between group. In velocity of horizontal on COG, both left and right down motion showed significant difference between group, and up motion of between down motion showed significant difference. In displacement of angle on ankle, knee, hip joint almost showed significant difference between group. Almost in body position was lower skilled group than unskilled group.