• 제목/요약/키워드: Kinematic approximation

검색결과 21건 처리시간 0.024초

Analytical Approximation in Deep Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권1호
    • /
    • pp.1-11
    • /
    • 2016
  • The objective of this paper is to present an analytical solution in deep water waves and verify the validity of the theory (Shin, 2015). Hence this is a follow-up to Shin (2015). Instead of a variational approach, another approach was considered for a more accurate assessment in this study. The products of two coefficients were not neglected in this study. The two wave profiles from the KFSBC and DFSBC were evaluated at N discrete points on the free-surface, and the combination coefficients were determined for when the two curves pass the discrete points. Thus, the solution satisfies the differential equation (DE), bottom boundary condition (BBC), and the kinematic free surface boundary condition (KFSBC) exactly. The error in the dynamic free surface boundary condition (DFSBC) is less than 0.003%. The wave theory was simplified based on the assumption tanh $D{\approx}1$ in this paper. Unlike the perturbation method, the results are possible for steep waves and can be calculated without iteration. The result is very simple compared to the 5th Stokes' theory. Stokes' breaking-wave criterion has been checked in this study.

점소성 구성식의 적분에 미치는 선형화 방법의 영향 (Comparison of Semi-Implicit Integration Schemes for Rate-Dependent Plasticity)

  • 윤삼손;이순복
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1907-1916
    • /
    • 2003
  • During decades, there has been much progress in understanding of the inelastic behavior of the materials and numerous inelastic constitutive equations have been developed. The complexity of these constitutive equations generally requires a stable and accurate numerical method. To obtain the increment of state variable, its evolution laws are linearized by several approximation methods, such as general midpoint rule(GMR) or general trapezoidal rule(GTR). In this investigation, semi-implicit integration schemes using GTR and GMR were developed and implemented into ABAQUS by means of UMAT subroutine. The comparison of integration schemes was conducted on the simple tension case, and simple shear case and nonproportional loading case. The fully implicit integration(FI) was the most stable but amplified the truncation error when the nonlinearity of state variable is strong. The semi-implicit integration using GTR gave the most accurate results at tension and shear problem. The numerical solutions with refined time increment were always placed between results of GTR and those of FI. GTR integration with adjusting midpoint parameter can be recommended as the best integration method for viscoplastic equation considering nonlinear kinematic hardening.

자유표면을 포함한 선체주위 난류유동 해석 코드 개발 (Code Development for Computation of Turbulent Flow around a Ship Model with Free-Surface)

  • 김정중;김형태;반석호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.145-155
    • /
    • 1998
  • A computer code has been developed for the computation of the viscous flow around a ship model with the free surface. In this code, the incompressible Reynolds-averaged Navier-Stokes equations are solved numerically by a finite difference method which employes second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration of the governing equations. For the turbulence closure, a modified version of the Baldwin-Lomax model is exploited. The location of the free surface is determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and the boundary-fitted grid is generated at each time step so that one of the grid surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition is applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method and the computer code developed in the present study, the numerical computations are carried out for both Wigley parabolic hull and Series 60 $C_B=0.6$ ship model and the computational results are compared with the experimental data.

  • PDF

Nonlinear modelling and analysis of thin piezoelectric plates: Buckling and post-buckling behaviour

  • Krommer, Michael;Vetyukova, Yury;Staudigl, Elisabeth
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.155-181
    • /
    • 2016
  • In the present paper we discuss the stability and the post-buckling behaviour of thin piezoelastic plates. The first part of the paper is concerned with the modelling of such plates. We discuss the constitutive modelling, starting with the three-dimensional constitutive relations within Voigt's linearized theory of piezoelasticity. Assuming a plane state of stress and a linear distribution of the strains with respect to the thickness of the thin plate, two-dimensional constitutive relations are obtained. The specific form of the linear thickness distribution of the strain is first derived within a fully geometrically nonlinear formulation, for which a Finite Element implementation is introduced. Then, a simplified theory based on the von Karman and Tsien kinematic assumption and the Berger approximation is introduced for simply supported plates with polygonal planform. The governing equations of this theory are solved using a Galerkin procedure and cast into a non-dimensional formulation. In the second part of the paper we discuss the stability and the post-buckling behaviour for single term and multi term solutions of the non-dimensional equations. Finally, numerical results are presented using the Finite Element implementation for the fully geometrically nonlinear theory. The results from the simplified von Karman and Tsien theory are then verified by a comparison with the numerical solutions.

Simulation of Moving Storm in a Watershed Using Distributed Models

  • Choi, Gye-Woon;Lee, Hee-Seung;Ahn, Sang-Jin
    • Korean Journal of Hydrosciences
    • /
    • 제5권
    • /
    • pp.1-16
    • /
    • 1994
  • In this paper distributed models for simulating spatially and temporally varied moving storm in a watershed were developed. The complete simulation in a watershed is achieved through two sequential flow simulations which are overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation were used in the overland flow simulation. On the other hand, in the channel network simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction were applied. The finite difference formulations were used in the channel network model. Macks Creek Experimental Watershed in Idaho, USA was selected as a target watershed and the moving storm on August 23, 1965, which continued from 3:30 P.M. to 5:30 P.M., was utilized. The rainfall intensity fo the moving storm in the watershed was temporally varied and the storm was continuously moved from one place to the other place in a watershed. Furthermore, runoff parameters, which are soil types, vegetation coverages, overland plane slopes, channel bed slopes and so on, are spatially varied. The good agreement between the hydrograph simulated using distributed models and the hydrograph observed by ARS are Shown. Also, the conservations of mass between upstreams and downstreams at channel junctions are well indicated and the wpatial and temporal vaiability in a watershed is well simulated using suggested distributed models.

  • PDF

Large displacement analysis of inelastic frame structures by convected material frame approach

  • Chiou, Yaw-Jeng;Wang, Yeon-Kang;Hsiao, Pang-An;Chen, Yi-Lung
    • Structural Engineering and Mechanics
    • /
    • 제13권2호
    • /
    • pp.135-154
    • /
    • 2002
  • This paper presents the convected material frame approach to study the nonlinear behavior of inelastic frame structures. The convected material frame approach is a modification of the co-rotational approximation by incorporating an adaptive convected material frame in the basic definition of the displacement vector and strain tensor. In the formulation, each discrete element is associated with a local coordinate system that rotates and translates with the element. For each load increment, the corresponding strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and based on the updated element geometry. The rigid body motion and deformation displacements are decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through the continuous updating of the material frame geometry. A generalized nonlinear function is used to derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show that the proposed approach is capable of investigating large deflection of inelastic planar structures and providing an excellent numerical performance.

만경강 하류 홍수위 예측을 위한 LISFLOOD-FP 모형의 적용성 검토 (Application of the LISFLOOD-FP model for flood stage prediction on the lower mankyung river)

  • 전호성;김지성;김규호;홍일
    • 한국수자원학회논문집
    • /
    • 제49권6호
    • /
    • pp.459-467
    • /
    • 2016
  • 홍수범람모의에 주로 활용되는 LISFLOOD-FP 모형은 하도에서 1차원 운동파 방정식을 이용하고, 상대적으로 평평하여 흐름이 확산되는 홍수터에서 단순화된 2차원 확산파 방정식을 이용하여 흐름을 해석한다. 본 연구에서는 분포형 수문모형인 LISFLOOD-FP 모형의 하천홍수위 예측 적용성을 검토하기 위하여 배수영향을 받는 만경강 하류구간에서 기 발생한 홍수사상을 대상으로 모형을 보정하고 검증하였다. 모형의 주요 매개변수인 Manning 조도계수와 하류단 경계조건의 민감도를 분석하였고, 초기조건 영향을 검토하기 위하여 warm-up 유무에 따른 해석결과를 비교하였다. 그 결과, 운동파 모형임에도 불구하고 배수영향을 받는 만경강 하류구간의 홍수위를 비교적 잘 재현하는 것을 확인하였고, 민감도 분석은 실제 홍수사상의 적용 시 여러 가지 매개변수와 경계 조건에 의해 홍수위 값이 상이한 결과를 나타났다. 이러한 결과를 바탕으로 운동파 수문모형의 적용시 홍수위 해석에 대한 충분한 검증 및 검토가 필요하다고 사료되며, 검증된 모형을 바탕으로 다양한 유역의 홍수범람모의에 적용이 된다면 향후 홍수피해 저감을 위한 정책적인 의사결정에 기여할 수 있을 것으로 판단된다.

An Analytical Solution for Regular Progressive Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권3호
    • /
    • pp.157-167
    • /
    • 2015
  • In order to provide simple and accurate wave theory in design of offshore structure, an analytical approximation is introduced in this paper. The solution is limited to flat bottom having a constant water depth. Water is considered as inviscid, incompressible and irrotational. The solution satisfies the continuity equation, bottom boundary condition and non-linear kinematic free surface boundary condition exactly. Error for dynamic condition is quite small. The solution is suitable in description of breaking waves. The solution is presented with closed form and dispersion relation is also presented with closed form. In the last century, there have been two main approaches to the nonlinear problems. One of these is perturbation method. Stokes wave and Cnoidal wave are based on the method. The other is numerical method. Dean's stream function theory is based on the method. In this paper, power series method was considered. The power series method can be applied to certain nonlinear differential equations (initial value problems). The series coefficients are specified by a nonlinear recurrence inherited from the differential equation. Because the non-linear wave problem is a boundary value problem, the power series method cannot be applied to the problem in general. But finite number of coefficients is necessary to describe the wave profile, truncated power series is enough. Therefore the power series method can be applied to the problem. In this case, the series coefficients are specified by a set of equations instead of recurrence. By using the set of equations, the nonlinear wave problem has been solved in this paper.

자유표면을 포함한 선체주위 난류유동 해석 (Computation of Turbulent Flow around a Ship Model with Free-Surface)

  • 김정중;김형태
    • 대한조선학회논문집
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2001
  • 본 논문에서는 비압축성 Reynolds-Averaged Navier-Stokes 방정식을 수치 해석하여 자유표면을 포함한 선체 주위의 난류 유동을 계산하였다. 정규격자 상에서 공간의 이산화는 2차 정도의 유한차분법을, 시간의 적분에는 4단계 Runge-Kutta법을 이용하였고, 난류 닫힘 조건을 만족시키기 위해 Baldwin-Lomax 난류 모형을 사용하였다. 자유표면의 위치는 운동학적 경계조건식을 Lax-Wendroff법으로 풀어서 구하였고, 자유표면과 격자 경계면을 일치시키기 위해 매 시간마다 새로 계산된 자유표면 위치에 맞추어 격자를 새로 구성하였다. 속도와 압력에 대한 경계조건은 자유표면에서 점성을 무시하여 근사한 동역학적 조건을 적용해서 구하였다. 본 연구에서 개발된 수치해법을 검증하기 위하여 실험자료가 많은 Wigley 선형과 Sries 60 $C_B=0.6$ 선형에 대해 수치계산을 수행하였고 계산된 선체 주위의 파형이 실험 결과와 잘 일치하는 것을 확인하였다.

  • PDF

자유수면 아래서 유한 Froude 수로 전진하는 2차원 수중익의 부분 및 초월 공동 유동 문제 해석 (Application of a Potential-Based Panel Method for Analysis of a 2-Dimensional Cavitating Hydrofoils Advancing Beneath a Free-Surface)

  • 류재문;이창섭;김영기
    • 대한조선학회논문집
    • /
    • 제30권2호
    • /
    • pp.112-122
    • /
    • 1993
  • 자유수면하에서 유한한 속도로 진행하는 2차원 수중익 주위에 발생하는 부분 및 초월 공동문제를 포텐셜을 기저로 하는 양력판 이론에 의해 해석하였다. 2차원 수중익 주위에 선형화된 자유표면 조건, 방사조건 및 무한수심 경계조건을 만족하는 법선 다이폴과 쏘오스를 분포함으로써 양력 및 캐비티 문제를 표현하였다. 수중익 표면에서의 역학적 경계조건은 수중익 내부의 전유동이 0이라는 조건으로 등치 되었고, 캐비티 표면에서의 역학적 경계조건인 압력이 일정 하다는 조건을 만족 시키기 위해 Bernoulli 방정식에 나타나는 정수압을 고려하였다. 계산결과로부터 공동 발생으로 인해 수중익 주위의 파형이 많이 변화함을 알 수 있었다. 또한 지금까지의 공동현상 해석문제에서 무시되었던 정수압의 영향이 자유수면 아래에서 발생하는 초월공동현상에 중요한 역할을 하고 있음이 확인되었다. 즉 수중익의 몰수깊이가 작을 때는 중력의 영향으로 캐비티의 크기가 커지게 되나 깊이 잠김에 따라 감소되고 있으며 양력은 몰수깊이가 커짐에 따라 감소하는 것 알 수 있었다.

  • PDF