• Title/Summary/Keyword: Kinematic GPS

Search Result 180, Processing Time 0.024 seconds

Precise Relative Positioning for Formation Flying Satellite using GPS Carrier-phase Measurements (GPS 반송파 위상을 사용한 편대비행위성 상대위치결정 연구)

  • Park, Jae-Ik;Lee, Eunsung;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1032-1039
    • /
    • 2012
  • The present paper deals with precise relative positioning of formation satellites with long baseline in low Earth orbit making use of L1/L2 dual frequency GPS carrier phase measurements. Kinematic approach means to describe the motion of objects without taking its mass/dynamics model into consideration. The advantage of the kinematic approach is that information about dynamics of the system is not applied, which gives more flexibility and could improve the scientific interest of the observations made by the mission. The ionosphere terms, which are not canceled by double differenced measurement equation in the case of the long baseline, are explicitly estimated as unknown parameters by extended Kalman filter. The estimated float ambiguities by EKF are solved by existing efficient integer vector search strategy under integer least square condition. For the integer vector search, we employ well known MLAMBDA. Finally, The feasibility and accuracy of processing scheme are demonstrated using the GPS measurements for two satellites in low Earth orbit separated by baselines of 100 km.

Development of Code-PPP Based on Multi-GNSS Using Compact SSR of QZSS-CLAS (QZSS-CLAS의 Compact SSR을 이용한 다중 위성항법 기반의 Code-PPP 개발)

  • Lee, Hae Chang;Park, Kwan Dong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.521-531
    • /
    • 2020
  • QZSS (Quasi-Zenith Satellite System) provides the CLAS (Centimeter Level Augmentation Service) through the satellite's L6 band. CLAS provides correction messages called C-SSR (Compact - State Space Representation) for GPS (Global Positioning System), Galileo and QZSS. In this study, CLAS messages were received by using the AsteRx4 of Septentrio which is a GPS receiver capable of receiving L6 bands, and the messages were decoded to acquire C-SSR. In addition, Multi-GNSS (Global Navigation Satellite System) Code-PPP (Precise Point Positioning) was developed to compensate for GNSS errors by using C-SSR to pseudo-range measurements of GPS, Galileo and QZSS. And non-linear least squares estimation was used to estimate the three-dimensional position of the receiver and the receiver time errors of the GNSS constellations. To evaluate the accuracy of the algorithms developed, static positioning was performed on TSK2 (Tsukuba), one of the IGS (International GNSS Service) sites, and kinematic positioning was performed while driving around the Ina River in Kawanishi. As a result, for the static positioning, the mean RMSE (Root Mean Square Error) for all data sets was 0.35 m in the horizontal direction ad 0.57 m in the vertical direction. And for the kinematic positioning, the accuracy was approximately 0.82 m in horizontal direction and 3.56 m in vertical direction compared o the RTK-FIX values of VRS.

Precise attitude determination strategy for spacecraft based on information fusion of attitude sensors: Gyros/GPS/Star-sensor

  • Mao, Xinyuan;Du, Xiaojing;Fang, Hui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The rigorous requirements of modern spacecraft missions necessitate a precise attitude determination strategy. This paper mainly researches that, based on three space-borne attitude sensors: 3-axis rate gyros, 3-antenna GPS receiver and star-sensor. To obtain global attitude estimation after an information fusion process, a feedback-involved Federated Kalman Filter (FKF), consisting of two subsystem Kalman filters (Gyros/GPS and Gyros/Star-sensor), is established. In these filters, the state equation is implemented according to the spacecraft's kinematic attitude model, while the residual error models of GPS and star-sensor observed attitude are utilized, to establish two observation equations, respectively. Taking the sensors' different update rates into account, these two subsystem filters are conducted under a variable step size state prediction method. To improve the fault tolerant capacity of the attitude determination system, this paper designs malfunction warning factors, based on the principle of ${\chi}^2$ residual verification. Mathematical simulation indicates that the information fusion strategy overwhelms the disadvantages of each sensor, acquiring global attitude estimation with precision at a 2-arcsecs level. Although a subsystem encounters malfunction, FKF still reaches precise and stable accuracy. In this process, malfunction warning factors advice malfunctions correctly and effectively.

A Theoric Study of Network-GPS Construction Using Stochastic Modelling (통계학적 모델링을 통한 Network-GPS 구축의 이론적 고찰)

  • 배경호;박운용;이기부;이동락
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.61-64
    • /
    • 2004
  • 현재 GPS를 이용한 위성측위시스템은 기존의 DGPS에 의한 정밀도 향상 차원을 넘어 상시관측소를 활용한 기준국의 활용 증대 및 다양한 동시 사용자의 욕구를 충족시키기 위해 여러 가지 연구들이 진행되고 있다 현재 국내 연구동향으로 VRS-RTK (Virtual Reference Station Real Time Kinematic)에 대한 기초 연구가 진행 중에 있으며 해양수산부의 전파를 이용한 비콘 방식과 표준과학연구원 천문대에서는 MBC와 연계한 FM-DARC(Data Radio Channel)방식 등이 활용 방안으로 준비중에 있으며, 여러 기관과 대학 연구 기관에서 기초 연구가 진행 중에 있다. 따라서 이미 독일, 싱가폴, 일본 등에서 활용하고 있는 VRS의 연구를 보다 심화하여 현재 각기 다른 기관에서 보유하고 있는 70여개의 GPS 상시관측소의 효율적인 활용과 대 국민 서비스를 제공할 수 있는 시스템이 절실히 필요한 시기이다. 따라서 본 논문에서는 이런 가상관측의 결과를 산출할 수 있는 통계학적 모델링을 통한 가상관측 보정값을 산출할 수 있는 보정값을 제시할 수 있는 알고리즘 개발에 그 목적이 있다. 향후 알고리즘 개발이 완료되면 통계학적 모델링을 통해 단일 기준점에 의한 GPS 측량에서 불가능한 위치 결정 네트웍의 가상 관측을 가능하게 할 것이며, 신뢰성 있는 미지정수 해를 만들 수 있을 것이다.

  • PDF

An Instantaneous Integer Ambiguity Resolution for GPS Real-Time Structure Monitoring (GPS 실시간 구조물 모니터링을 위한 반송파 관측데이터 순간미지정수 결정)

  • Lee, Hungkyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.341-353
    • /
    • 2014
  • In order to deliver a centimeter-level kinematic positioning solution with GPS carrier-phase measurements, it is prerequisite to use correctly resolved integer ambiguities. Based on the mathematical modeling of GPS network with application of its geometrical constraints, this research has investigated an instantaneous ambiguity resolution procedure for the so-called 'integer constrained least-squares' technique which can be effectively implemented in real-time structure monitoring. In this process, algorithms of quality control for the float solutions and hypothesis tests using the constrained baseline for the ambiguity validation are included to enhance reliability of the solutions. The proposed procedure has been implemented by MATLAB, the language of technical computing, and processed field trial data obtained at a cable-stayed bridge to access its real-world applicability. The results are summarized in terms of ambiguity successful rates, impact of the stochastical models, and computation time to demonstrate performance of the instantaneous ambiguity resolution proposed.

Production of A Plane Figure of Campus with RTK GPS and TS (RTK GPS측량과 토탈스테이션에 의한 교내 평면도 제작)

  • Lee, In-Su;Lee, Kee-Boo;Park, Woon-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.4 s.22
    • /
    • pp.69-76
    • /
    • 2002
  • Nowadays information is very important for Civil Engineering. This information is acquiredmostly via Surveying & Geo-spatial Information System. Also this information is close to the ITS(Intelligent Transformation System), Navigation, Facility Management, and Digital Mapping, etc and applicable to versatile fields from now on. And in surveying fields, GPS satellites are introduced newly and play a great rules. In this study, RTK(Real-Time Kinematic GPS), one of the positioning technology with GPS satellites, is used for the production of Plane Figure of Campus. The results shows that it is possible to extract the information for some part of a flowerbed and road, but not so for the buildings surrounded. Therefore this give occasion to the a lowering of work effectiveness over the total work-flow. So at such a time, it will be expected that the supplementary systems such TS(Total Station), Plane-table, and theodolite, etc have to be used.

  • PDF

A STUDY ON THE IMPROVEMENT OF NEAR-REAL TIME GPS PHASE DATA PROCESSING ALGORITHM (준실시각 GPS 위상자료 처리 알고리즘 성능 개선에 관한 연구)

  • 손동효;조정호;박종욱;임형철;박필호;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.129-140
    • /
    • 2004
  • KAO(Korea Astronomy Observatory) GPS group has developed an iRTK system as a near-real time positioning system using GPS carrier phase data. We focused on improving the accuracy of positioning through the updated capability of data processing of KAO's iRTK system using low-cost L1 carrier phase receiver. The accuracy of a positioning was demonstrated by Extended Kalman filter. Experiments were accomplished using from 30m to 20km baselines. Within 10km, the positioning accuracy was improved by approximately 50-70% to the previous study using one minute observable data. However, it took two minutes to obtain 1m level positioning accuracy at 20km point. We expect that the developed iRTK system can be applied to the various fields of GPS in near-real time positioning.

Real- time Precise Positioning Algorithm with Float Ambiguity and Performance Analysis (실수 미지정수를 이용한 실시간 정밀위치 결정기법 및 성능분석)

  • 이영식;지규인;한훈택
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.51-51
    • /
    • 2000
  • The ambiguity resolution is an essential task for the precise carrier phase differential GPS. In practice, however, there are still many problems in resolving the ambiguity in kinematic mode, especially in the urban areas. The multipath in received signal, the frequent change in visible satellites, and the cyclic slips make the ambiguity resolution very difficult task in real-time operation. In this paper, we consider a differential positioning with the float ambiguity that is free from the integer constraint. The float ambiguity estimation if carried out by the Kalman filter. The float and fixed ambiguities are combined together to determine the position in real-time kinematic mode.

  • PDF

Performance Improvement of the Wald Test for GPS RTK with the Assistance of INS

  • Abdel-Hafez, Mamoun F.;Kim, Dae-Je;Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jae;Kang, Tae-Sam;Sung, Sang-Kyung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.534-543
    • /
    • 2008
  • To use the Global Positioning System (GPS) carrier phase measurement for precise positioning, the integer ambiguities at the early stage of most algorithms must be determined. Furthermore, if a precise positioning is to be applied to real time navigation, fast determination and validation methods for integer ambiguity are essential. In this paper, the Wald test that simultaneously determines and validates integer ambiguities is used with assistance of the Inertial Navigation System (INS) to improve its performance. As the Wald test proceeds, it assigns a higher probability to the candidate that is considered to be true at each time step. The INS information is added during the Wald test process. Large performance improvements were achieved in convergence time as well as in requiring fewer observable GPS satellites. To test the performance improvement of the Wald test with the INS information, experimental tests were conducted using a ground vehicle. The vehicle moved in a prescribed trajectory and observed seven GPS satellites. To verify the effect of the INS information on the Wald test, the convergence times were compared with cases that considered the INS information and cases that did not consider the INS information. The results show that the benefits of using the INS were emphasized as fewer GPS satellites were observable. The performance improvement obtained by the proposed algorithm was shown through the fast convergence to the true hypothesis when using the INS measurements.

A Study on the Accuracy Analysis of Numerical Cadastral Map by GPS-RTK (GPS-RTK를 이용한 수치지적도의 정확도 분석에 관한 연구)

  • Lee, Dae-Woo;Jung, Young-Dong;Kang, Sang-Gu;Choi, Han-Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.9 no.2 s.18
    • /
    • pp.47-54
    • /
    • 2001
  • The aim of this study is to represent the effective method for undertaking cadastral surveying works through analyzing and comparison of the surveying results both Total Station and GPS surveying techniques. in the value of coordinate of land parcels, the surveying results of using Total Station and Real Time Kinematic GPS surveying are compared and anayzed. As a results, each axis X and Y differences are ${\Delta}X=0.02m\;and\;{\Delta}Y=0.02$. Therefore the latter surveying method is available to use for production of numerical casdastral map at a large scale and for field surveying in farmland adjustment area. Furthermore travers surveying is not needed to be done when horizontal position of the boundary of a land parcel is determined by the method of RTK. It is recognized as a effective and efficient method in rapaid, accurate and economical aspects.

  • PDF