• Title/Summary/Keyword: Kinase Domain

Search Result 248, Processing Time 0.023 seconds

Silencing of CaCDPK4 ( Capsicum annuum Calcium Dependent Protein Kinase) and ItsOrtholog, NbCDPK5 Induces Cell Death in Nicotiana benthamiana

  • Eunsook Chung;Kim, Young-Cheol;Oh, Sang-Keun;Younghee Jung;Kim, Soo-Yong;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.77.1-77
    • /
    • 2003
  • We have isolated a full-length cDNA clone, CaCDPK4 encoding a typical calcium-dependent protein kinase (CDPK) from hot pepper cDNA library. Genomic southern blot analysis showed that it belongs to a multigene family, but represents a single copy gone in hot pepper genome. RNA expression pattern of this gene revealed that it is induced by infiltration of Xanthomonas axonopodis pv. glycines Bra into hot pepper leaves but not by water deficit stress. However, high salt treatment of NaCl (0.4 M) solution to hot pepper plants strongly induced CaCDPK4 gene. In addition, this gene is weakly responsive to the exogenous application of salicylic acid or ethephon. Biochemical study of the GST-CaCDPK4 recominant protein showed that it autophosphorylates in vitro and the presence of EGTA, a calcium chelater, eliminates the kinase activity of the recombinant protein. As a way to identify the in vivo function of CaCDPK4 in plants, VIGS (Virus-Induced Gene Silencing) was employed. Agrobacterium-mediated TRV silencing construct containing the kinase and calmodulin domain of CaCDPK4 resulted in cell death of Nicotiana benthamiana plants. A highly homologous H benthamiana CDPK gene, NbCDPK5, to CaCDPK4 was cloned from N. benthamiana cDNA library. VIGS of NbCDPK5 also resulted in cell death. The molecular characterization of this cell death phenotype is being under investigation.

  • PDF

Scutellarein Reduces Inflammatory Responses by Inhibiting Src Kinase Activity

  • Sung, Nak Yoon;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.441-449
    • /
    • 2015
  • Flavonoids are plant pigments that have been demonstrated to exert various pharmacological effects including anti-cancer, anti-diabetic, anti-atherosclerotic, anti-bacterial, and anti-inflammatory activities. However, the molecular mechanisms in terms of exact target proteins of flavonoids are not fully elucidated yet. In this study, we aimed to evaluate the anti-inflammatory mechanism of scutellarein (SCT), a flavonoid isolated from Erigeron breviscapus, Clerodendrum phlomidis and Oroxylum indicum Vent that have been traditionally used to treat various inflammatory diseases in China and Brazil. For this purpose, a nitric oxide (NO) assay, polymerase chain reaction (PCR), nuclear fractionation, immunoblot analysis, a kinase assay, and an overexpression strategy were employed. Scutellarein significantly inhibited NO production in a dose-dependent manner and reduced the mRNA expression levels of inducible NO synthase (iNOS) and tumor necrosis factor (TNF)-${\alpha}$ in lipopolysaccharide (LPS)-activated RAW264.7 cells. In addition, SCT also dampened nuclear factor (NF)-${\kappa}B$-driven expression of a luciferase reporter gene upon transfection of a TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF) construct into Human embryonic kidney 293 (HEK 293) cells; similarly, NF-${\kappa}B$ nuclear translocation was inhibited by SCT. Moreover, the phosphorylation levels of various upstream signaling enzymes involved in NF-${\kappa}B$ activation were decreased by SCT treatment in LPS-treated RAW264.7 cells. Finally, SCT strongly inhibited Src kinase activity and also inhibited the autophosphorylation of overexpressed Src. Therefore, our data suggest that SCT can block the inflammatory response by directly inhibiting Src kinase activity linked to NF-${\kappa}B$ activation.

Analysis of Phosphorylation of the BRI1/BAK1 Complex in Arabidopsis Reveals Amino Acid Residues Critical for Receptor Formation and Activation of BR Signaling

  • Yun, Hye Sup;Bae, Young Hee;Lee, Yun Ji;Chang, Soo Chul;Kim, Seong-Ki;Li, Jianming;Nam, Kyoung Hee
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.183-190
    • /
    • 2009
  • The plasma membrane-localized BRASSINOSTEROID-INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED KINASE1 (BAK1) are a well-known receptor pair involved in brassinosteroids (BR) signaling in Arabidposis. The formation of a receptor complex in response to BRs and the subsequent activation of cytoplasmic domain kinase activity share mechanistic characteristics with animal receptor kinases. Here, we demonstrate that BRI1 and BAK1 are BR-dependently phosphorylated, and that phosphorylated forms of the two proteins persist for different lengths of time. Mutations of either protein abolished phosphorylation of the counterpart protein, implying transphosphorylation of the receptor kinases. To investigate the specific amino acids critical for formation of the receptor complex and activation of BAK1 kinase activity, we expressed several versions of BAK1 in yeast and plants. L32E and L46E substitutions resulted in a loss of binding of BAK1 to BRI1, and threonine T455 was essential for the kinase activity of BAK1 in yeast. Transgenic bri1 mutant plants overexpressing BAK1(L46E) displayed reduced apical dominance and seed development. In addition, transgenic wild type plants overexpressing BAK1(T455A) lost the phosphorylation activity normally exhibited in response to BL, leading to semi-dwarfism. These results suggest that BAK1 is a critical component regulating the duration of BR efficacy, even though it cannot directly bind BRs in plants.

Chronicles of EGFR Tyrosine Kinase Inhibitors: Targeting EGFR C797S Containing Triple Mutations

  • Duggirala, Krishna Babu;Lee, Yujin;Lee, Kwangho
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase widely expressed in many cancers such as non-small cell lung cancer (NSCLC), pancreatic cancer, breast cancer, and head and neck cancer. Mutations such as L858R in exon 21, exon 19 truncation (Del19), exon 20 insertions, and others are responsible for aberrant activation of EGFR in NSCLC. First-generation EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib have clinical benefits for EGFR-sensitive (L858R and Del19) NSCLC patients. However, after 10-12 months of treatment with these inhibitors, a secondary T790M mutation at the gatekeeper position in the kinase domain of EGFR was identified, which limited the clinical benefits. Second-generation EGFR irreversible inhibitors (afatinib and dacomitinib) were developed to overcome this T790M mutation. However, their lack of selectivity toward wild-type EGFR compromised their clinical benefits due to serious adverse events. Recently developed third-generation irreversible EGFR TKIs (osimertinib and lazertinib) are selective toward driving mutations and the T790M mutation, while sparing wild-type EGFR activity. The latest studies have concluded that their efficacy was also compromised by additional acquired mutations, including C797S, the key residue cysteine that forms covalent bonds with irreversible inhibitors. Because second- and third-generation EGFR TKIs are irreversible inhibitors, they are not effective against C797S containing EGFR triple mutations (Del19/T790M/C797S and L858R/T790M/C797S). Therefore, there is an urgent unmet medical need to develop next-generation EGFR TKIs that selectively inhibit EGFR triple mutations via a non-irreversible mechanism.

Casein Kinase 2 interacts with human mitogen- and stress-activated protein kinase MSK1 and phosphorylates it at Multiple sites

  • Shi, Yan;Han, Guanghui;Wu, Huiling;Ye, Kan;Tian, Zhipeng;Wang, Jiaqi;Shi, Huili;Ye, Mingliang;Zou, Hanfa;Huo, Keke
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.840-845
    • /
    • 2009
  • Mitogen- and stress-activated protein kinase (MSK1) palys a crucial role in the regulation of transcription downstream of extracellular-signal-regulated kinase1/2 (ERK1/2) and mitogen-activated protein kinase p38. MSK1 can be phosphorylated and activated in cells by both ERK1/2 and p38$\alpha$. In this study, Casein Kinase 2 (CK2) was identified as a binding and regulatory partner for MSK1. Using the yeast two-hybrid system, MSK1 was found to interact with the CK2$\beta$ regulatory subunit of CK2. Interactions between MSK1 and the CK2$\alpha$ catalytic subunit and CK2$\beta$ subunit were demonstrated in vitro and in vivo. We further found that CK2$\alpha$ can only interact with the C-terminal kinase domain of MSK1. Using site-directed mutagenesis assay and mass spectrometry, we identified five sites in the MSK1 C-terminus that could be phosphorylated by CK2 in vitro: Ser757, Ser758, Ser759, Ser760 and Thr793. Of these, Ser757, Ser759, Ser760 and Thr793 were previously unknown.

Structural Insights into the Regulation of ACC2 by Citrate

  • Kwon, Seong Jung;Cho, Yong Soon;Heo, Yong-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.565-568
    • /
    • 2013
  • Acetyl-CoA carboxylases (ACCs) play critical roles in fatty acid synthesis and oxidation by the catalytic activity of the carboxylation of acetyl-CoA to malonyl-CoA. It is known that ACCs are inactivated through reversible phosphorylation by AMP-activated protein kinase (AMPK) and allosterically activated by citrate. Here, we determined the crystal structures of biotin carboxylase (BC) domain of human ACC2 phosphorylated by AMPK in the presence of citrate in order to elucidate the activation mechanism by citrate. This structure shows that phosphorylated Ser222 is released from the dimer interface, and thereby facilitating the dimerization or oligomerization of the BC domain allosterically. This structural explanation is coincident with the experimental result that the phosphorylated Ser222 was dephosphorylated more easily by protein phosphatase 2A (PP2A) as the citrate concentration increases.

Bacterial Overexpression and Denaturing Purification of VPS34-Binding Domain of Beclin 1

  • Baek, Jong-Hyuk;Jung, Juneyoung;Seo, Jeongbin;Kim, Jeong Hee;Kim, Joungmok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1808-1816
    • /
    • 2016
  • As a scaffolding subunit of the PIK3C3/VPS34 complex, Beclin 1 recruits a variety of proteins to class III phosphatidylinositol-3-kinase (VPS34), resulting in the formation of a distinct PIK3C3/VPS34 complex with a specific function. Therefore, the investigation of a number of Beclin 1 domains required for the protein-protein interactions will provide important clues to understand the PIK3C3/VPS34 complex, of which Beclin1-VPS34 interaction is the core unit. In the present study, we have designed a bacterial overexpression system for the Beclin 1 domain corresponding to VPS34 binding (Vps34-BD) and set up the denaturing purification protocol due to the massive aggregation of Vps34-BD in Escherichia coli. The expression and purification conditions determined in this study successfully provided soluble and functional Vps34-BD.

Cloning and Characterization of DAP10 homologue gene from Olive Flounder, Paralichthys olivaceus

  • Park, Chan-Il;Kim, Mu-Chan;Hwang, Jee-Youn;Kim, Ki-Hyuk;Kim, Joo-Won
    • Journal of fish pathology
    • /
    • v.19 no.3
    • /
    • pp.227-233
    • /
    • 2006
  • Olive flounder immunoreceptor DAP10 homologue cDNA was cloned from a peripheral blood lymphocytes (PBLs) cDNA library. The length of the olive flounder DAP10 cDNA is 473bp and it contains an open reading frame of 234bp. The predicted polypeptide sequence is 78 amino acids, consisting of a 22-amino acid leader, an 11-amino acid extracellular domain, a 21-amino acid transmembrane segment, and a 24-amino acid cytoplasmic domain. The amino acid sequence of olive flounder DAP10 has 56%, 50%, 32%, 31%, and 31% sequence identity with zebrafish DAP10, catfish DAP10, cattle DAP10, rat DAP10 and Monkey DAP10, respectively. Olive flounder DAP10 has a conserved aspartic acid in the transmembrane domain and a phophatidylinositol-3 kinase-binding site (YxxM/V) in the cytoplasmic region. Genomic organization reveals that olive flounder DAP10 comprises five exons and four introns. A phylogenetic analysis based on the deduced amino acid sequence grouped the olive flounder DAP10 with other species DAP10. In RT-PCR analysis, DAP10 transcripts were detected predominantly in PBLs, kidney, spleen and intestine.

Structural characterization of As-MIF and hJAB1 during the inhibition of cell-cycle regulation

  • Park, Young-Hoon;Jeong, Suk;Ha, Ki-Tae;Yu, Hak Sun;Jang, Se Bok
    • BMB Reports
    • /
    • v.50 no.5
    • /
    • pp.269-274
    • /
    • 2017
  • The biological activities of macrophage migration inhibitory factor (MIF) might be mediated through a classical receptor-mediated or non-classical endocytic pathway. JAB1 (C-Jun activation domain-binding protein-1) promotes the degradation of the tumor suppressor, p53, and the cyclin-dependent kinase inhibitor, p27. When MIF and JAB1 are bound to each other in various intracellular sites, MIF inhibits the positive regulatory effects of JAB1 on the activity of AP-1. The intestinal parasite, Anisakis simplex, has an immunomodulatory effect. The molecular mechanism of action of As-MIF and human JAB1 are poorly understood. In this study, As-MIF and hJAB1 were expressed and purified with high solubility. The structure of As-MIF and hJAB1 interaction was modeled by homology modeling based on the structure of Ace-MIF. This study provides evidence indicating that the MIF domain of As-MIF interacts directly with the MPN domain of hJAB1, and four structure-based mutants of As-MIF and hJAB1 disrupt the As-MIF-hJAB1 interaction.