Cloning and Characterization of DAP10 homologue gene from Olive Flounder, Paralichthys olivaceus

  • Published : 2006.12.01

Abstract

Olive flounder immunoreceptor DAP10 homologue cDNA was cloned from a peripheral blood lymphocytes (PBLs) cDNA library. The length of the olive flounder DAP10 cDNA is 473bp and it contains an open reading frame of 234bp. The predicted polypeptide sequence is 78 amino acids, consisting of a 22-amino acid leader, an 11-amino acid extracellular domain, a 21-amino acid transmembrane segment, and a 24-amino acid cytoplasmic domain. The amino acid sequence of olive flounder DAP10 has 56%, 50%, 32%, 31%, and 31% sequence identity with zebrafish DAP10, catfish DAP10, cattle DAP10, rat DAP10 and Monkey DAP10, respectively. Olive flounder DAP10 has a conserved aspartic acid in the transmembrane domain and a phophatidylinositol-3 kinase-binding site (YxxM/V) in the cytoplasmic region. Genomic organization reveals that olive flounder DAP10 comprises five exons and four introns. A phylogenetic analysis based on the deduced amino acid sequence grouped the olive flounder DAP10 with other species DAP10. In RT-PCR analysis, DAP10 transcripts were detected predominantly in PBLs, kidney, spleen and intestine.

Keywords

References

  1. Aoki, T., Nam, B.H. and Hirono, I.: Sequence of 596 cDNA clones (565,977) of Japanese flounder Paralichthys olivaceus leukocytes infected with hirame rhabdovirus. Mar. BiotechnoI. 1: 477-488, 1999 https://doi.org/10.1007/PL00011804
  2. Bancroft, G.J.: The role of natural killer cells in innate resistance to infection. Curr, Opin. Immunol., 5: 503-510, 1993 https://doi.org/10.1016/0952-7915(93)90030-V
  3. Bauer, S., Groh, V., Wu, J., Steinle, A, Phillips, J.H. and Lanier, L.L.: Spies T Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science, 285: 727-729,1999 https://doi.org/10.1126/science.285.5428.727
  4. Binstadt, B.A., Brumbaugh, K.M., Dick, C.J., Scharenberg, A.M., Williams, B.L., Colonna, M., Lanier, L.L., Kinet, J.P., Abraham, R.T and Leibson, P.J.: Sequential involvement of Lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcRinitiated tyrosine kinase activation. Immunity, 5: 629-638, 1996 https://doi.org/10.1016/S1074-7613(00)80276-9
  5. Binstadt, B.A., Brumbaugh, K.M. and Leibson, P.J.: Signal transduction by human NK cell MHC-recognizing receptors. Immunol. Rev., 155: 197-203, 1997 https://doi.org/10.1111/j.1600-065X.1997.tb00952.x
  6. BIery, M., Delonn, J., Trautmann, A.,Cambiaggi, A., Olcese, L., Biassoni, R., Maretta, L., Chavrier, P., Moretta, A, Daeron, M. and Vivier, E.: Reconstituted killer cell inhibitory receptors for major histocompatibility complex class I molecules control mast cell activation induced via immunoreceptor tyrosine-based activation motifs. J. BioI. Chem., 272: 8989-8996,1997 https://doi.org/10.1074/jbc.272.14.8989
  7. Burshtyn, D.N., Scharenberg, A.M., Wagtmann, N., Rajagopalan, S., Berrada, K., Yi, T., Kinet, J.P. and Long, E.O.: Recruitment of tyrosine phosphatase HCP by the killer cell inhibitor receptor. Immunity, 4: 77-85,1996 https://doi.org/10.1016/S1074-7613(00)80300-3
  8. Clark, W.R, Walsh, C.M., Glass, A.A, Hayashi, F., Matloubian, M. and Ahmed, R: Molecular pathways of CTL-mediated cytotoxicity. ImmunoI. Rev., 146: 33-44,1995 https://doi.org/10.1111/j.1600-065X.1995.tb00682.x
  9. Colonna, M.: DAP12 signaling: from immune cells to bone modeling and brain myelination. J. Clin. Invest., 111: 313-314,2003 https://doi.org/10.1172/JCI17745
  10. Daeron, M., Latour, S., Malbec, O., Espinosa, E., Pina, P, Pasmans, S. and Fridman, W.H.: The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc gamma RIIB, regulates negatively BCR, TCR, and FcR dependent cell activation. Immunity, 3: 635-646, 1995 https://doi.org/10.1016/1074-7613(95)90134-5
  11. Diefenbach, A., Jamieson, A.M., Liu, S.D., Shastri, N. and Raulet, D.H.: Ligands for the murine NKG2D receptor: expression by tumor cells and activation on NK cells and macrophages. Nat. ImmunoI., 1: 119-126, 2000
  12. Felsenstein, J.: PHYLIP (phylogeny inference package), version 4.0. Department of Genetics, University of Washington, Seattle. 1996
  13. Fry, A.M., Lanier, L.L. and Weiss, A: Phosphotyrosines in the killer cell inhibitory receptor motif of NKB 1 are required for negative signaling and for association with protein tyrosine phosphatase 1C. J. Exp.Med., 184: 295-300, 1996 https://doi.org/10.1084/jem.184.1.295
  14. Guselnikov, S.V., Najakshin, S.M. and Taranin, A.V.: Fugu rubripes possesses genes for the entire set of the ITAM-bearing transmembrane signal subunits. Immunogenetics, 55: 472-479,2003 https://doi.org/10.1007/s00251-003-0599-0
  15. Katagiri, T., Hirano, I. and Aoki, T: Identification of a eDNA for medaka cytoskeletal betaactin and construction for the reverse transcriptase-polyrnerase chain reaction(RTPCR) primer. Fish. Sci., 63: 73-76,1997 https://doi.org/10.2331/fishsci.63.73
  16. Lanier, L.L.: Natural killer cell receptors and MHC class I interactions. Curr, Opin. Immunol.,9: 126-131,1997 https://doi.org/10.1016/S0952-7915(97)80169-0
  17. Lanier, L.L.: NK cell receptors. Annu. Rev.Immuno.,116: 359-393, 1998
  18. Lanier, L.L., Corliss, B.C., Wu, J., Leong, C. and Phillips, J.H.: Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature, 391: 703-707, 1998a https://doi.org/10.1038/35642
  19. Lanier, L.L., Corliss, B., Wu, J. and Phillips, J.H.: Association of DAP12 with activating CD94/NKG2C NK cell receptors. Immunity, 8: 693-701, 1998b https://doi.org/10.1016/S1074-7613(00)80574-9
  20. Lanier, L.L. and Bakker, A.B.: The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol. Today, 21: 611-614,2000 https://doi.org/10.1016/S0167-5699(00)01745-X
  21. McVicar, D.W., Taylor, L.S., Gosselin, P., WilletteBrown, J., Mikhael, A.I, Geahlen, R.L., Nakamura, M.C., Linnemeyer, P., Seaman, W.E., Anderson, S.K., Ortaldo, J.R. and Mason, L.H.: DAP12-mediated signal transduction in natural killer cells: a dominant role for the Syk protein-tyrosine kinase. J. BioI. Chem., 273: 32934-32942, 1998 https://doi.org/10.1074/jbc.273.49.32934
  22. Nam, B.H., Yamamoto, E., Hirono, I. and Aoki, T.: A survey of expressed genes in the leukocytes of Japanese flounder, Paralichthys olivaceus, infected with hirame rhabdovirus, Dev. Comp. Immunol.,24: 13-24,2000 https://doi.org/10.1016/S0145-305X(99)00058-0
  23. Trinchieri, G.: Biology of natural killer cells. Adv.Immunol.47: 187-376, 1989 https://doi.org/10.1016/S0065-2776(08)60664-1
  24. Vely, F. and Vivier, E.: Conservation of structural features reveals the existence of a large family of inhibitory cell surface receptors and noninhibitory/activatory counterparts. J.Immunol. 159: 2075-2077, 1997
  25. Wilson, M.J., Lindquist, J.A. and Trowsdale, J.: DAP12 and KAP10 (DAP10)-novel transmembrane adapter proteins of the CD3 family. Immunol. Res. 22: 21-42, 2000 https://doi.org/10.1385/IR:22:1:21
  26. Wu, J., Song, Y, Bakker, A.B., Bauer, S., Spies, T., Lanier, L.L. and Phillips, J.H.: An activating immunoreceptor complex formed by NKG2D and DAP10. Science, 285: 730-732,1999 https://doi.org/10.1126/science.285.5428.730
  27. Yim, D.S., Jie, H.B., Lanier, L.L., Kim, Y.B.: Molecular cloning, gene structure, and expression pattern of pig immunoreceptor DAP12. Immunogenetics, 51: 436-442, 2000 https://doi.org/10.1007/s002510050642