• Title/Summary/Keyword: Kinase Domain

Search Result 248, Processing Time 0.021 seconds

Identification of the spk Gene Encoding Sphingosine Kinase in Sphingomonas chungbukensis DJ77 and Its Expression in Escherichia coli (Sphingomonas chungbukensis DJ77에서 Sphingosine Kinase를 암호화하는 spk 유전자의 동정과 대장균에서의 발현)

  • Lee Su-Ri;Um Hyun-Ju;Kim Young-Chang
    • Korean Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.93-98
    • /
    • 2005
  • The sphingosine kinase gene, which is 969-nucleotide long, was identified during the whole genome sequencing of Sphingomonas chungbukensis DJ77. The amino acid sequence showed the identity of $55\%$ with that of Zymomonas mobilis subsp. mobilis ZM4. C2, C3, and C5 domains of eukaryotic sphingosine kinase were found in sphingosine kinase from Sphingomonas chungbukensis DI77. One of these three conserved sites, GGDG, was predicted as a ATP-binding site, and the functions of the others were unknown currently. The phylogenetic tree constructed by ClustalX indicated that the sphingosine kinase of S. chungbukensis DJ77 was near the phylogenetic group COG1597, and did not belong to the group of diacylglycerol kinase of the same strain. The recombinant sphingosine kinase was expressed in Escherichia coli, but it was made in form of inclusion body.

The PPLA Motif of Glycogen Synthase Kinase 3β Is Required for Interaction with Fe65

  • Lee, Eun Jeoung;Hyun, Sunghee;Chun, Jaesun;Shin, Sung Hwa;Lee, Kyung Eun;Yeon, Kwang Hum;Park, Tae Yoon;Kang, Sang Sun
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.100-105
    • /
    • 2008
  • Glycogen synthase kinase $3{\beta}$ (GSK $3{\beta}$) is a serine/threonine kinase that phosphorylates substrates such as ${\beta}$-catenin and is involved in a variety of biological processes, including embryonic development, metabolism, tumorigenesis, and cell death. Here, we present evidence that human GSK $3{\beta}$ is associated with Fe65, which has the characteristics of an adaptor protein, possessing a WW domain, and two phosphotyrosine interaction domains, PID1 and PID2. The GSK $3{\beta}$ catalytic domain also contains a putative WW domain binding motif ($^{371}PPLA^{374}$), and we observed, using a pull down approach and co-immunoprecipitation, that it interacts physically with Fe65 via this motif. In addition, we detected co-localization of GSK $3{\beta}$ and Fe65 by confocal microscopy, and this co-localization was disrupted by mutation of the putative WW domain binding motif of GSK $3{\beta}$. Finally, in transient transfection assays interaction of GSK $3{\beta}$ (wt) with Fe65 induced substantial cell apoptosis, whereas interaction with the GSK $3{\beta}$ AALA mutant ($^{371}AALA^{374}$) did not, and we noted that phosphorylation of the Tyr 216 residue of the GSK $3{\beta}$ AALA mutant was significantly reduced compared to that of GSK $3{\beta}$ wild type. Thus, our observations indicate that GSK $3{\beta}$ binds to Fe65 through its $^{371}PPLA^{374}$ motif and that this interaction regulates apoptosis and phosphorylation of Tyr 216 of GSK $3{\beta}$.

Diagnostic Relevance of Overexpressed Serine Threonine Tyrosine Kinase/Novel Oncogene with Kinase Domain (STYK1/NOK) mRNA in Colorectal Cancer

  • Orang, Ayla Valinezhad;Safaralizadeh, Reza;Hosseinpour Feizi, Mohammad Ali;Somi, Mohammad Hossein
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6685-6689
    • /
    • 2014
  • Background: Alterations in gene expression levels or mutations of tyrosine kinases are detected in some human cancers. In this study, we examined whether serine threonine tyrosine kinase 1 (STYK1)/novel oncogene with kinase domain (NOK) is overexpressed in patients with colorectal cancer. We also examined the clinical relevance of STYK1/NOK expression in cancer tissues. Materials and Methods: In tumor samples of patients with colorectal cancer and their matched non-cancerous samples, STYK1/NOK messenger RNA (mRNA) expression was analyzed by quantitative reverse transcriptase polymerase chain reaction. Associations between the expression levels of STYK1/NOK and clinicopathological characteristics of colorectal cancer were also assessed using Mann-Whitney U and Kruskal-Wallis tests. Results: Upregulation of STYK1/NOK was found in cancer tissues even at early stage of colorectal cancer compared to normal adjacent tissues. The optimal cutoff point of 0.198 the STYK1/NOK expression showed 0.78 sensitivity and 0.75 specificity for diagnosis. Overexpressed STYK1/NOK was correlated with tumor size but had no association with other clinicopathological characteristics of colorectal cancer. Conclusions: These results indicate that STYK1/NOK mRNA is widely expressed in the patients with colorectal cancer and suggest that inhibition of this molecule could potentially serve as a novel therapeutic target.

Suppression of Protein Kinase C and Nuclear Oncogene Expression as Possible Action Mechanisms of Cancer Chemoprevention by Curcumin

  • Lin, Jen-Kun
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.683-692
    • /
    • 2004
  • Curcumin (diferuloylmethane) is a major naturally-occurring polyphenol of Curcuma species, which is commonly used as a yellow coloring and flavoring agent in foods. Curcumin has shown anti-carcinogenic activity in animal models. Curcumin possesses anti-inflammatory activity and is a potent inhibitor of reactive oxygen-generating enzymes such as lipoxygenase/cyclooxygenase, xanthine dehydrogenase/oxidase and inducible nitric oxide synthase; and an effective inducer of heme oxygenase-1. Curcumin is also a potent inhibitor of protein kinase C(PKC), EGF(Epidermal growth factor)-receptor tyrosine kinase and LĸB kinase. Subsequently, curcumin inhibits the activation of NF(nucleor factor)KB and the expressions of oncogenes including c-jun, c-fos, c-myc, NIK, MAPKs, ERK, ELK, PI3K, Akt, CDKs and iNOS. It is proposed that curcumin may suppress tumor promotion through blocking signal transduction path-ways in the target cells. The oxidant tumor promoter TPA activates PKC by reacting with zinc thiolates present within the regulatory domain, while the oxidized form of cancer chemopreventive agent such as curcumin can inactivate PKC by oxidizing the vicinal thiols present within the catalytic domain. Recent studies indicated that proteasome-mediated degradation of cell proteins playa pivotal role in the regulation of several basic cellular processes including differentiation, proliferation, cell cycling, and apoptosis. It has been demonstrated that curcumin-induced apoptosis is mediated through the impairment of ubiquitin-proteasome pathway. Curcumin was first biotransformed to dihydrocurcumin and tetrahydrocurcumin and that these compounds subsequently were converted to monoglucuronide conjugates. These results suggest that curcumin-glucuronide, dihydrocurcumin-glucuronide, tetrahydrocurcumin-glucuronide and tetrahydrocurcumin are the major metabolites of curcumin in mice, rats and humans.

Detection of the expression of a Bombyx mori Atypical Protein Kinase C in BmPLV-Infected Larval Midgut

  • Cao, Jian;He, Yuanqing;Li, Guohui;Chen, Keping;Kong, Jie;Wang, Fenghua;Shi, Jing;Yao, Qin
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.22 no.2
    • /
    • pp.59-64
    • /
    • 2011
  • Protein kinase C (PKC) is involved in many cellular signaling pathways, it participates in many physiological processes, such as cell cycle, growth, proliferation, differentiation and apoptosis. To investigate the effect of PKC on the silkworm midgut tissue infection of Bombyx mori parvo-like virus (BmPLV), a B. mori atypical protein kinase C (BmaPKC) gene was cloned from larval midgut tissue, expressed in E. coli and purified. Additionally, the BmPLV susceptible silkworm strain and resistant silkworm strain were used to test the effect of the B. mori infection on BmPLV. The result showed that BmaPKC encodes a predicted 586 amino acid protein, which contains a C-terminal kinase domain and an N-terminal regulatory domain. The maximum expression amount of the soluble (His)6-tagged fusion protein was detected after 0.8 mmol/L IPTG was added and cultured at $21^{\circ}C$. The (His) 6-tagged fusion protein revealed about 73 kDa molecular weight which confirmed by western blot and mass spectrography. Furthermore BmaPKC protein were detected at 0-72 h post-infection in BmPLVinfected larval midgut tissue, western blot showed that as time went on, the expression of BmaPKC increased gradually in susceptible strain, the expression quantity on 72 h is 5 times of 0 h. However, in resistant strain, the expression quantity is slightly lower than susceptible strain. But no significant change in resistant strain was observed as time went on. The available data suggest that BmaPKC may involve in the regulation of BmPLV proliferation.

Phosphorylation of Transcriptional Factor by Mitogen-activated Protein (MAP) Kinase Purified from Nucleus (핵 내에서 분리한 Mitogen-Activated Protein (MAP) Kinase의 Transcription Factor에 대한 인산화)

  • 김윤석;김소영;김태우
    • Biomedical Science Letters
    • /
    • v.2 no.2
    • /
    • pp.175-185
    • /
    • 1996
  • The mitogen-activated protein(MAP) kinase signal transduction pathway represents an important mechanism by which mitogen, such as serum and PMA, regulate cell proliferation and differentiation. Target substrates of the MAP kinase are located within several compartments containing plasma membranes and nucleus. We now report that serum addition induces proliferation of the P388 murine leukemia cell, but PMA does not, while both serum and PMA treatment cause translocation of the MAP kinase, mainly p42$^{mapk}$ isoform, from cytosol into the nucleus, which was monitored by immunoblot analysis using polyclonal anti-ERK1 antibodies. We investigated whether the MAP kinase was capable of phosphorylating c-Jun protein and GST-fusion proteins, the P562$^{kk}$N-terminal peptides (1-77 or 1-123 domain) of the T cell tyrosine kinase, using the partially purified MAP kinase by SP-sephadex C-50, phenyl superose and Mono Q column chromatography. We found that the partially purified MAP kinase was able to phosphorylate c-Jun protein and the GST-fusion protein expressed using E.coli DH5$\alpha$ which is transformed with pGEX-3Xb plasmid vector carrying of p562$^{kk}$N-terminal peptide-encoding DNA. These results imply that tyrosine kinase receptor/Ras/Raf/MAP kinase pathway is a major mechanism for mitogen-induced cell proliferation in P388 murine leukemia cell and that the various MAP kinase isoforms may have their own target substrates located in distinct subcellular compartments.

  • PDF

The functional roles of plant glycogen synthase kinase 3 (GSK3) in plant growth and development (식물의 생장 및 발달과정에서 Glycogen synthase kinase 3 (GSK3) 유전자의 역할)

  • Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • The biological roles of glycogen synthase kinase 3 (GSK3) proteins have long been extensively explored in eukaryotic organisms including fungi, animals and plants. This gene family has evolutionary well conserved kinase domain and shares similar phosphorylation properties to their substrate proteins. However, their specific biological roles are surprisingly distinct in different organisms. GSK3s play key role in key regulating the cytoskeleton and metabolic processes in animal systems, but plant GSKs are involved in quite different processes, such as flower development, brassinosteroid signaling, abiotic stresses, and organogenesis. In particular, recent studies have reported the critical multiple functions of BIN2 and its related paralogues plant GSK3s during organogenesis via connecting hormonal or developmental programs. In this review, we outline the recent understanding in the versatile functions related in physiological and biochemical relevance, which are mediated by plant GSK3s in various cellular signaling.

Mapping of the Interaction Domain of DNA Topoisomerase $II{\alpha}$ and $II{\beta}$ with Extracellular Signal-Regulated Kinase 2

  • Park, Gye-Hwa;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.85-89
    • /
    • 2001
  • Both topoisomerase $II{\alpha}$ and $II{\beta}$ east as phosphoproteins in the cells. Recently it was reported that DNA topoisomerase $II{\alpha}$ associates with and is phosphorylated by the extracellular signal-regulated kinase 2 (ERK2). Also, ERK2 stimulates the activity of topoisomerase II by a phosphorylation-independent manner [Shapiro et al., (1999) Mol. Cell. Biol. 19, 3551-3560]. In this study, a yeast two-hybrid system was used to investigate the binding site between topoisomerase $II{\alpha}$ or $II{\beta}$ and ERK2. The two-hybrid test clearly showed that topoisomerase $II{\beta}$ residues 1099-1263, and topoisomerase $II{\alpha}$ residues 1078-1182, mediate the interaction with ERK2, and that the leucine zipper motifs of topoisomerase $II{\alpha}$ and $II{\beta}$ are not required for its physical binding to ERK2. Our results suggest that topoisomerase $II{\beta}$ residues 1099-1263, and topoisomerase $II{\alpha}$ residues 1078-1182, may be common binding sites for activator proteins.

  • PDF

Isolation and Characterization of a Novel Calcium/Calmodulin-Dependent Protein Kinase, AtCK, from Arabidopsis

  • Jeong, Jae Cheol;Shin, Dongjin;Lee, Jiyoung;Kang, Chang Ho;Baek, Dongwon;Cho, Moo Je;Kim, Min Chul;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.276-282
    • /
    • 2007
  • Protein phosphorylation is one of the major mechanisms by which eukaryotic cells transduce extracellular signals into intracellular responses. Calcium/calmodulin ($Ca^{2+}/CaM$)-dependent protein phosphorylation has been implicated in various cellular processes, yet little is known about $Ca^{2+}/CaM$-dependent protein kinases (CaMKs) in plants. From an Arabidopsis expression library screen using a horseradish peroxidase-conjugated soybean calmodulin isoform (SCaM-1) as a probe, we isolated a full-length cDNA clone that encodes AtCK (Arabidopsis thaliana calcium/calmodulin-dependent protein kinase). The predicted structure of AtCK contains a serine/threonine protein kinase catalytic domain followed by a putative calmodulin-binding domain and a putative $Ca^{2+}$-binding domain. Recombinant AtCK was expressed in E. coli and bound to calmodulin in a $Ca^{2+}$-dependent manner. The ability of CaM to bind to AtCK was confirmed by gel mobility shift and competition assays. AtCK exhibited its highest levels of autophosphorylation in the presence of 3 mM $Mn^{2+}$. The phosphorylation of myelin basic protein (MBP) by AtCK was enhanced when AtCK was under the control of calcium-bound CaM, as previously observed for other $Ca^{2+}/CaM$-dependent protein kinases. In contrast to maize and tobacco CCaMKs (calcium and $Ca^{2+}/CaM$-dependent protein kinase), increasing the concentration of calmodulin to more than $3{\mu}M$ suppressed the phosphorylation activity of AtCK. Taken together our results indicate that AtCK is a novel Arabidopsis $Ca^{2+}/CaM$-dependent protein kinase which is presumably involved in CaM-mediated signaling.

Chromophore formation and phosphorylation analysis of constitutively active rhodopsin mutants (Chromophore 형성과 rhodopsin kinase 활성을 이용한 항활성 로돕신 mutant의 분석)

  • Kim, Jong-Myoung
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.783-790
    • /
    • 2007
  • G protein coupled receptors (GPCRs) transmit various extracellular signals into the cells. Upon binding of the ligands, conformational changes in the extracellular and/or transmembrane (TM) domains of CPCRs were propagated into the cytoplasmic (CP) domain of the molecule leading to the activation of their cognate heterotrimeric C proteins and kinases. Constitutively active GPCR mutants causing the activation of C Protein signaling even in the absence of ligand binding are of interest for the study of activation mechanism of GPCRs. Two classes of constitutively active mutations, categorized by their effects on the salt bridge between Ell3 and K296, were found in the TM domain of rhodopsin. Opsin mutants containing combinations of the mutations were constructed to study the conformational changes required for the activation of rhodopsin. Rhodopsin chromophore regenerated with 11-cis-retinal showed a thermal stability inversely correlated with its constitutive activity. In contrast, rhodopsin mutants exhibited a binding affinity to an agonist, all-trans-retinal, in a constitutive activity-dependent manner. In order to test whether the conformational changes responsible for the activation of trans-ducin (Gt) are the same as the conformation required for the recognition of rhodopsin kinase, analysis of the mutants were carried out with phosphorylation by rhodopsin kinase. Rhodopsin mutants containing combinations of different classes of the mutations showed a strong synergistic effect on the phosphorylation of the mutants in the dark as similar to that of Gt activation. The results suggest that at least two or three kinds of segmental and independent conformational changes are required for the activation of rhodopsin and the conformational changes responsible for activating rhodopsin kinase and Gt are similar to each other.