Browse > Article
http://dx.doi.org/10.5352/JLS.2007.17.6.783

Chromophore formation and phosphorylation analysis of constitutively active rhodopsin mutants  

Kim, Jong-Myoung (Department of Aquaculture, Pukyong National University)
Publication Information
Journal of Life Science / v.17, no.6, 2007 , pp. 783-790 More about this Journal
Abstract
G protein coupled receptors (GPCRs) transmit various extracellular signals into the cells. Upon binding of the ligands, conformational changes in the extracellular and/or transmembrane (TM) domains of CPCRs were propagated into the cytoplasmic (CP) domain of the molecule leading to the activation of their cognate heterotrimeric C proteins and kinases. Constitutively active GPCR mutants causing the activation of C Protein signaling even in the absence of ligand binding are of interest for the study of activation mechanism of GPCRs. Two classes of constitutively active mutations, categorized by their effects on the salt bridge between Ell3 and K296, were found in the TM domain of rhodopsin. Opsin mutants containing combinations of the mutations were constructed to study the conformational changes required for the activation of rhodopsin. Rhodopsin chromophore regenerated with 11-cis-retinal showed a thermal stability inversely correlated with its constitutive activity. In contrast, rhodopsin mutants exhibited a binding affinity to an agonist, all-trans-retinal, in a constitutive activity-dependent manner. In order to test whether the conformational changes responsible for the activation of trans-ducin (Gt) are the same as the conformation required for the recognition of rhodopsin kinase, analysis of the mutants were carried out with phosphorylation by rhodopsin kinase. Rhodopsin mutants containing combinations of different classes of the mutations showed a strong synergistic effect on the phosphorylation of the mutants in the dark as similar to that of Gt activation. The results suggest that at least two or three kinds of segmental and independent conformational changes are required for the activation of rhodopsin and the conformational changes responsible for activating rhodopsin kinase and Gt are similar to each other.
Keywords
C protein-coupled receptor; signal transduction; constitutive activation; rhodopsin kinase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Thurmond, R. L., C. Creuzenet, P. J. Reeves and H. G. Khorana. 1997. Structure and function in rhodopsin : Peptide sequences in the cytoplasmic loops of rhodopsin are intimately involved in interaction with rhodopsin kinase. Proc. Natl. Acad. Sci. USA. 94, 1715-1720   DOI   ScienceOn
2 Gether, U. 2000. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocrine Rev. 21, 90-113   DOI   ScienceOn
3 Papermaster, D. S. 1982. Preparation of antibodies to rhodopsin and the large protein of rod outer segments. Methods Enzymol. 81, 240-246   DOI
4 Ridge, K., Z. Lu, X. Liu and H. G. Khorana. 1995. Structure and function in rhodopsin. Separation and characterization of the correctly folded and misfolded opsins produced on expression of an opsin mutant gene containing only the native intradiscal cysteine codons. Biochemistry 34, 3261-3267   DOI   ScienceOn
5 Parnot, C., S. Miserey-Lenkei, S. Bardin, P. Corvol and E. Clauser. 2002. Lessons from constitutively active mutants of G protein-coupled receptors. Trends Endocrinol. Metabol. 13, 336-343   DOI   ScienceOn
6 Rao, V. R. and D. D. Oprian. 1996. Activating mutations of rhodopsin and other G protein-coupled receptors. Ann. Rev. Biophys. Biomol. Str. 25. 287-314   DOI   ScienceOn
7 Rao, V. R., G. B. Cohen and D. D. Oprian. 1994. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367, 639-642   DOI   ScienceOn
8 Robinson, P. R., G. B. Cohen, E. A. Zhukovsky and D. D. Oprian. 1992. Constitutively active mutants of rhodopsin. Neuron 9, 719-725   DOI   ScienceOn
9 Sakmar, T. P., R. R. Franke and H. G. Khorana. 1989. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. Proc. Natl. Acad. Sci. USA 86, 8309-8313   DOI   ScienceOn
10 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning : A Laboratory Manual. 3rd Ed. Cold Spring Harbor Laboratory Press. Plainview, New York.
11 Teller, D. C., T. Okada, C. A. Behnke, K. Palczewski and R. E. Stenkamp. 2001. Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 40, 7761-7772   DOI   ScienceOn
12 Knowles, A. and A. Priestley. 1978. The preparation of 11-cis-retinal. Vision Res. 18, 115-116   DOI   ScienceOn
13 Khorana, H. G. 2000. Molecular Biology of light transduction by the mammalian photoreceptor, rhodopsin. J. Biomol. Struct. Dyn. 11. 1-6
14 Kim, J. M., C. Altenbach, R. L. Thurmond, H. G. Khorana and W. L. Hubbell. 1997. Structure and function in rhodopsin: rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state. Proc. Natl. Acad. Sci. USA 94, 14273-14278   DOI
15 Kim, J. M., C. Altenbach, M. Kono, D. D. Oprian, W. L. Hubbell and H. G. Khorana. 2004. Structural origins of constitutive activation in rhodopsin : Role of the K296/ E113 salt bridge. Proc. Natl. Acad. Sci. USA 101, 12508-12513   DOI   ScienceOn
16 Kuhn, H. and W. J. Dreyer. 1972. Light-dependent phosphorylation by ATP. FEBS. Lett. 20, 1-6   DOI   ScienceOn
17 Lefkowitz, R. J. 2000. The superfamily of heptahelical receptors. Nature Cell. Biol. 2, 133-136   DOI   ScienceOn
18 Meng, E. C. and H. R. Bourne. 2001. Receptor activation: what does the rhodopsin structure tell us? Trends Pharmacol. Sci. 22, 587-593   DOI   ScienceOn
19 Molday, R. S. and D. MacKenzie. 1983. Monoclonal antibodies to rhodopsin: characterization, cross-reactivity and application as structural probes. Biochemistry 22, 653-660   DOI   ScienceOn
20 Oprian, D. D., R. S. Molday, R. J. Kaufman and H. G. Khorana. 1987. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc. Natl. Acad. Sci. USA 84, 8874-8878   DOI   ScienceOn
21 Bruel, C., K. Cha, L. Niu, P. J. Reeves and H. G. Khorana. 2000. Rhodopsin kinase : Two mAbs binding near the carboxy terminus cause time-dependent inactivation. Proc. Natl. Acad. Sci. USA 97, 3010-3015   DOI
22 Palczewski, K., T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto and M. Miyano. 2000. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739-745   DOI   ScienceOn
23 Bennett, N., M. Michel-Villaz and H. Kuhn. 1982. Lightinduced interaction between rhodopsin and GTP-binding protein. Metarhodopsin II is the major product involved. Eur. J. Biochem. 127, 97-103   DOI   ScienceOn
24 Brown, N. G., C. Fowles, R. Sharma and M. Akhtar. 1992. Mechanistic studies on rhodopsin kinase. Light-dependent phosphorylation of C-terminal peptides of rhodopsin. Eur. J. Biochem. 208, 659-667   DOI   ScienceOn
25 Cohen, G. B., T. Yang, P. R. Robinson and D. D. Oprian. 1993. Constitutive activation of opsin : Influence of charge at position 134 and size at position 296. Biochemistry 32, 6111-6115   DOI   ScienceOn
26 Franke, R. R., T. P. Sakmar, R. M. Graham and H. G. Khorana. 1992. Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin. J. Biol. Chem. 267, 14767-14774
27 Han, M., S. O. Smith and T. P. Sakmar. 1998. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. Biochemistry 37, 8253-8261   DOI   ScienceOn
28 Khorana, H. G., P. J. Reeves and J.-M. Kim. 2002. Structure and mechanism in G protein-coupled receptors. Pharmaceut. Rev. 9, 287-294
29 Karnik, S. S., C. Gognea, S. Patil, Y. Saad and T. Takezako. 2003. Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol. Metabol. 14, 431-437   DOI   ScienceOn