Browse > Article
http://dx.doi.org/10.7314/APJCP.2014.15.16.6685

Diagnostic Relevance of Overexpressed Serine Threonine Tyrosine Kinase/Novel Oncogene with Kinase Domain (STYK1/NOK) mRNA in Colorectal Cancer  

Orang, Ayla Valinezhad (Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz)
Safaralizadeh, Reza (Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz)
Hosseinpour Feizi, Mohammad Ali (Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz)
Somi, Mohammad Hossein (Liver and Gastroenterology Diseases Research Center, Tabriz University of Medical Sciences)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.15, no.16, 2014 , pp. 6685-6689 More about this Journal
Abstract
Background: Alterations in gene expression levels or mutations of tyrosine kinases are detected in some human cancers. In this study, we examined whether serine threonine tyrosine kinase 1 (STYK1)/novel oncogene with kinase domain (NOK) is overexpressed in patients with colorectal cancer. We also examined the clinical relevance of STYK1/NOK expression in cancer tissues. Materials and Methods: In tumor samples of patients with colorectal cancer and their matched non-cancerous samples, STYK1/NOK messenger RNA (mRNA) expression was analyzed by quantitative reverse transcriptase polymerase chain reaction. Associations between the expression levels of STYK1/NOK and clinicopathological characteristics of colorectal cancer were also assessed using Mann-Whitney U and Kruskal-Wallis tests. Results: Upregulation of STYK1/NOK was found in cancer tissues even at early stage of colorectal cancer compared to normal adjacent tissues. The optimal cutoff point of 0.198 the STYK1/NOK expression showed 0.78 sensitivity and 0.75 specificity for diagnosis. Overexpressed STYK1/NOK was correlated with tumor size but had no association with other clinicopathological characteristics of colorectal cancer. Conclusions: These results indicate that STYK1/NOK mRNA is widely expressed in the patients with colorectal cancer and suggest that inhibition of this molecule could potentially serve as a novel therapeutic target.
Keywords
Colorectal cancer; oncogene; tyrosine kinase; NOK/STYK1; diagnosis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Fambrough D, McClure K, Kazlauskas A, Lander ES (1999). Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell, 97, 727-41.   DOI
2 Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F (1987). A novel putative tyrosine kinase receptor encoded by the eph gene. Science, 238, 1717-20.   DOI
3 Hubbard SR and Till JH (2000). Protein tyrosine kinase structure and function. Annu Rev Biochem, 69, 373-98.   DOI   ScienceOn
4 Jackson KA, Handy J, Kimbro KS (2009). Aberrant STYK1 expression in ovarian cancer tissues and cell lines. J Ovarian Res, 2, 15-21.   DOI
5 Karimi K, Mahmoudi T, Karimi N, et al (2013). Is there an association between variants in candidate insulin pathway genes IGF-I, IGFBP-3, INSR, and IRS2 and risk of colorectal cancer in the Iranian population? Asian Pac J Cancer Prev, 14, 5011-6.   과학기술학회마을   DOI
6 Kimbro KS, Willard M, Moore JA, Freeman S (2008). A novel gene STYK1/NOK is upregulated in estrogen receptor-alpha negative estrogen receptor-beta positive breast cancer cells following estrogen treatment. Mol Biol Rep, 35, 23-7.   DOI   ScienceOn
7 Kornprat P, Pollheimer MJ, Lindtner RA, et al (2011). Value of tumor size as a prognostic variable in colorectal cancer: a critical reappraisal. Am J Clin Oncol, 34, 43-9.   DOI   ScienceOn
8 Lamorte L and Park M (2001). The receptor tyrosine kinases: role in cancer progression. Surg Oncol Clin N Am, 10, 271-88,
9 Li YH, Wang YY, Zhong S, at al (2009). Transmembrane helix of novel oncogene with kinase-domain (NOK) influences its oligomerization and limits the activation of RAS/MAPK signaling. Mol Cells, 27, 39-45.   DOI   ScienceOn
10 Liu L, Yu XZ, Li TS, et al (2004). A novel protein tyrosine kinase NOK that shares homology with platelet- derived growth factor/fibroblast growth factor receptors induces tumorigenesis and metastasis in nude mice. Cancer Res, 64, 3491-9.   DOI
11 Matsuda Y, Uenda J, Ishiwata T (2012). Fibroblast growth factor receptor 2: expression, roles, and potential as a novel molecular target for colorectal cancer. Patholog Res Int, 2012, 574768.
12 Robinson D, He F, Pretlow T, Kung HJ (1996). A tyrosine kinase profile of prostate carcinoma. Proc Natl Acad Sci USA, 93, 5958-62.   DOI
13 Safaee A, Moghimi-Dehkordi B, Fatemi SR, et al (2010). Characteristics of colorectal mucinous adenocarcinoma in Iran. Asian Pac J Cancer Prev, 11, 1373-5.
14 Samanian S, Mahjoubi F, Mahjoubi B, Mirzaee R, Azizi R (2011). MDR1 gene polymorphisms: possible association with its expression and clinicopathology characteristics in colorectal cancer patients. Asian Pac J Cancer Prev, 12, 3141-5.
15 Sato T, Oshima T, Yoshihara K, et al (2009). Overexpression of the fibroblast growth factor receptor-1 gene correlates with liver metastasis in colorectal cancer. Oncol Re, 21, 211-6.
16 Shemirani AI, Haghighi MM, Zadeh SM, et al (2011). Simplified MSI marker panel for diagnosis of colorectal cancer. Asian Pac J Cancer Prev, 12, 2101-4.
17 Shepard HM, Brdlik CM, Schreiber H (2008). Signal integration: a framework for understanding the efficacy of therapeutics targeting the human EGFR family. J Clin Invest, 118, 3574-81.   DOI
18 Zwick E, Bange J, Ullrich A (2002). Receptor tyrosine kinases as targets for anticancer drugs. Trends Mol Med, 8, 17-23.   DOI   ScienceOn
19 Siegel R, Naishadham D, Jemal A (2013). Cancer statistics, 2013. CA Cancer J Clin, 63, 11-30.   DOI   ScienceOn
20 Spano JP, Lagorce C, Atlan D, et al (2005). Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann Oncol, 16, 102-8.   DOI
21 Berclaz G, Andres AC, Albrecht D, et al (1996). Expression of the receptor protein tyrosine kinase myk-1/htk in normal and malignant mammary epithelium. Biochem Biophys Res Commun, 226, 869-75.   DOI
22 Amachika T, Moriai R, Tsuji N, Watanabe N (2007). Diagnostic relevance of overexpressed mRNA of novel oncogene with kinase-domain (NOK) in lung cancers. Lung Cancer, 56, 337-40.   DOI
23 Barouni M, Larizadeh MH, Sabermahani A, Ghaderi H (2012). Markov's modeling for screening strategies for colorectal cancer. Asian Pac J Cancer Prev, 13, 5125-9.   과학기술학회마을   DOI
24 Barrett J, Jiwa M, Rose P, Hamilton W (2006). Pathways to the diagnosis of colorectal cancer: an observational study in three UK cities. Fam Pract, 23, 15-9.   DOI
25 Blume-Jensen P and Hunter T (2001). Oncogenic kinase signalling. Nature, 411, 355-65.   DOI   ScienceOn
26 Chen Y, Li YH, Chen XP, et al (2005). Point mutation at single tyrosine residue of novel oncogene NOK abrogates tumorigenesis in nude mice. Cancer Res, 65, 10838-46.   DOI
27 Chung S, Tamura K, Furihata M, et al (2009). Overexpression of the potential kinase serine/ threonine/tyrosine kinase 1 (STYK 1) in castration-resistant prostate cancer. Cancer Sci, 100, 2109-14.   DOI
28 Danilkovitch-Miagkova A, Zbar B (2002). Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J Clin Invest, 109, 863-7.   DOI
29 Ding X, Jiang QB, Li R, Chen S, Zhang S (2012). NOK/ STYK1 has a strong tendency towards forming aggregates and colocalises with epidermal growth factor receptor in endosomes. Biochem Biophys Res Commun, 421, 468-73.   DOI
30 Kondoh T, Kobayashi D, Tsuji N, Kuribayashi K, Watanabe N (2009). Overexpression of serine threonine tyrosine kinase 1/novel oncogene with kinase domain mRNA in patients with acute leukemia. Exp Hematol, 37, 824-30.   DOI