• Title/Summary/Keyword: Kinase

Search Result 4,541, Processing Time 0.031 seconds

Overexpression of CD44 Standard Isoform Upregulates HIF-1α Signaling in Hypoxic Breast Cancer Cells

  • Ryu, Dayoung;Ryoo, In-geun;Kwak, Mi-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.487-493
    • /
    • 2018
  • Cluster of differentiation 44 (CD44), a cell surface receptor for hyaluronic acid (HA), is involved in aggressive cancer phenotypes. Herein, we investigated the role of the CD44 standard isoform (CD44s) in hypoxia-inducible $factor-1{\alpha}$ ($HIF-1{\alpha}$) regulation using MCF7 overexpressing CD44s (pCD44s-MCF7). When pCD44s-MCF7 was incubated under hypoxia, levels of $HIF-1{\alpha}$, vascular endothelial growth factor, and the $HIF-1{\alpha}$ response element-derived luciferase activity were significantly increased compared to those in the control MCF7. Incubation of pCD44s-MCF7 cells with HA further increased $HIF-1{\alpha}$ accumulation, and the silencing of CD44s attenuated $HIF-1{\alpha}$ elevation, which verifies the role of CD44s in $HIF-1{\alpha}$ regulation. In addition, the levels of phosphorylated extracellular signal-regulated kinase (ERK) was higher in hypoxic pCD44s-MCF7 cells, and $HIF-1{\alpha}$ accumulation was diminished by the pharmacological inhibitors of ERK. CD44s-mediated $HIF-1{\alpha}$ augmentation resulted in two functional outcomes. First, pCD44s-MCF7 cells showed facilitated cell motility under hypoxia via the upregulation of proteins associated with epithelial-mesenchymal transition, such as SNAIL1 and ZEB1. Second, pCD44s-MCF7 cells exhibited higher levels of glycolytic proteins, such as glucose transporter-1, and produced higher levels of lactate under hypoxa. As a consequence of the enhanced glycolytic adaptation to hypoxia, pCD44s-MCF7 cells exhibited a higher rate of cell survival under hypoxia than that of the control MCF7, and glucose deprivation abolished these differential responses of the two cell lines. Taken together, these results suggest that CD44s activates hypoxia-inducible $HIF-1{\alpha}$ signaling via ERK pathway, and the $CD44s-ERK-HIF-1{\alpha}$ pathway is involved in facilitated cancer cell viability and motility under hypoxic conditions.

Effects of Storing Time on the Values of the Clinical Biochemistry in Sprague-Dawley(SD) Rats (랫드 혈청의 저장기간에 따른 혈액생화학치 변화)

  • Son, Hwa-Young;Lee, Hyun-Sook;Kim, Young-Hee;Kim, Yong-Beom;Kim, Il-Hwan;Ha, Chang-Su;Kang, Boo-Hyon
    • Korean Journal of Veterinary Pathology
    • /
    • v.3 no.2
    • /
    • pp.87-91
    • /
    • 1999
  • The present study was undertaken to compare the variation on serum biochemical values by storage in the rats. Sera were prepared from 30 Sprague-Dawley rats of each sex. 5 aliquots from each serum were placed in a -80$^{\circ}C$ freezer with the exception of I aliquots which was analyzed immediately. The analysis was performed on the following months; 1, 2, 3, 6, and 12 months after freezing. The parameters measured) were aspartate aminotransferase(AST), alanine aminotransferase(ALT), alkaline phosphatase(ALP), blood urea nitrogen(BUN) creatinine(CRE), glucose(GLU), total cholesterol(TCHO), triglyceride (TG), total protein(TP), albumin(ALB), total bilirubin(TBIL), calcium(Ca$\^$++/), inorganic phosphorus(IP), creatine kinase (CK), phospholipid(PL), albumin-globulin ratio(A/G), sodium(Na$\^$+/), potassium(K$\^$+/), and chloride(Cl$\^$-/) The statistical analysis with Repeated Measures ANOVA, did not show statistical significance in the parameters of AST, ALT, BUN, TG, CK, A/G, Na$\^$+/ of 1 month freezed sera, in those of AST, TG, CK, K$\^$+/) of 2 month freezed sera, in those of AST, ALT, BUN, CRE, TCHO, TP, TBIL, CK, PL, Na$\^$+/), K$\^$+/), Ct on month fteezed sera, in those of Cl$\^$-/ of 6 month fteezed sera, and in those of ALT, TG, ALB of 12 month freezed sera in male SD rats. On the other hand, it did not show statistical significance in the parameters of AST, ALT, ALP, BUN, GLU, TCHO, TG, TBIL, CK, PL, A/G, Na$\^$+/ of 1 month freezed sera, in those of AST, TCHO of 2 month freezed sera, in those of AST, BUN, CRE, TCHO, TP, TBIL, CK, PL of 3 month freezed sera, in those of TCHO, IP, PL of 6 month freezed sera, and in those of ALB of 12 month freezed sera in female SD rats. On the basis of the results, although there are some statistical variations in the biochemical values of the sera, it is suggested that if sera are analysed at the same time before 12 months storage in a -80 $^{\circ}C$ freezer, the storing time does not affect the biochemical evaluation of the sera in SD rats.

  • PDF

Screening of Biologically Active Compounds from Weeds I (잡초(雜草)에 함유(含有)된 생리활성물질(生理活性物質) 탐색(探索) I)

  • Kim, C.J.;Kang, B.H.;Lee, I.K.;Ryoo, I.J.;Park, D.J.;Lee, K.H.;Lee, H.S.;Yoo, I.D.
    • Korean Journal of Weed Science
    • /
    • v.14 no.1
    • /
    • pp.16-22
    • /
    • 1994
  • Ninty three species of domestic weeds were collected and screened for antimicrobial, antitumor, antioxidant and herbicidal activities. Among them, few showed antifungal activities. Cuscuta japonica showed inhibitory activity against Alternaria mali, Ambrosia artemisiifolia and Geranium sibiricum against Phytophthora capsici, Aster yomema and Aster pilosus against Phytophthora parasitica. Ambrosia artemisiifolia, Artemisia princeps, Artemisia capillaris, Ludwigia prostrata, Chrysanthemum zawadskii, Bidens frondosa, and Geranium sibiricum showed broad antibacterial activities. Carex chordorhiza, Artemisia capillaris, Persicaria nodosa, Senecio koreanus, Pariicum bisulcatum, Geranium sibiricum showed antiblebbing activity on human chronic leukemia K562 cell, among them, Persicaria nodosa was the strongist. Angelica decursiva, Equisetum arvense, Cimicifuga heracleifolia, Persicaria nodosa, Geranium sibiricum, Oenothera odorata, Cyperus sanguinolentus showed antioxidant activities. Ludwigia prostrata and Peucedanum terebinthaceum showed strong herbicidal activities.

  • PDF

Gene Expression Profiling of Genotoxicity Induced by MNNG in TK6 Cell

  • Suh, Soo-Kyung;Kim, Tae-Gyun;Kim, Hyun-Ju;Koo, Ye-Mo;Lee, Woo-Sun;Jung, Ki-Kyung;Jeong, Youn-Kyoung;Kang, Jin-Seok;Kim, Joo-Hwan;Lee, Eun-Mi;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.98-106
    • /
    • 2007
  • Genotoxic stress triggers a variety of biological responses including the transcriptional activation of genes regulating DNA repair, cell survival and cell death. In this study, we investigated to examine gene expression profiles and genotoxic response in TK6 cells treated with DNA damaging agents MNNG (N-methyl-N'-nitrosoguanidine) and hydrogen peroxide $(H_2O_2)$. We extracted total RNA in three independent experiments and hybridized cRNA probes with oligo DNA chip (Applied Biosystems Human Genome Survey Microarray). We analyzed raw signal data with R program and AVADIS software and identified a number of deregulated genes with more than 1.5 log-scale fold change and statistical significancy. We indentified 14 genes including G protein alpha 12 showing deregulation by MNNG. The deregulated genes by MNNG represent the biological pathway regarding MAP kinase signaling pathway. Hydrogen peroxide altered 188 genes including sulfiredoxins. These results show that MNNG and $H_2O_2$ have both uniquely regulated genes that provide the potential to serve as biomarkers of exposure to DNA damaging agents.

Effect of Bisphenol A on Insulin-Mediated Glucose Metabolism In Vivo and In Vitro

  • Ko, Jeong-Hyeon;Kang, Ju-Hee;Park, Chang-Shin;Shin, Dong-Wun;Kim, Ji-Hye;Kim, Hoon;Han, Seung-Baik
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.348-354
    • /
    • 2008
  • Bisphenol A (BPA), an environmental endocrine disrupter, enters the human body continuously in food and drink. Young children are likely to be more vulnerable than adults to chemical exposure due to the immaturities of their organ systems, rapid physical development, and higher ventilation, metabolic rates, and activity levels. The direct effect of BPA on peripheral tissue might also be of importance to the development of insulin resistance. However, the influence that BPA has on insulin signaling molecules in skeletal muscle has not been previously investigated. In this study, we examined the effect of BPA on fasting blood glucose (FBG) in post-weaned Wistar rats and on insulin signaling proteins in C2C12 skeletal muscle cells. Subsequently, we investigated the effects of BPA on insulin-mediated Akt phosphorylation in C2C12 myotubes. In rats, BPA treatment (0.1-1,000 ng/mL for 24 hours) resulted in the increase of FBG and plasma insulin levels, and reduced insulin-mediated Akt phosphorylation. Furthermore, the mRNA expression of insulin receptor (IR) was decreased after 24 hours of BPA treatment in C2C12 cells in a dose-dependent manner, whereas the mRNA levels of other insulin signaling proteins, including insulin receptor substrate-1 (IRS-1) and 5'-AMP-dependent protein kinase (AMPK), were unaffected. Treatment with BPA increased GLUT4 expression and protein tyrosine phosphatase 1B (PTP1B) activity in C2C12 myotubes, but not in protein levels. We conclude that exposure to BPA can induce insulin resistance by decreasing IR gene expression, which is followed by a decrease in insulin- mediated Akt activation and increased PTP1B activity.

Inhibitory effect of Nymphoides indica extract on α-MSH induced melanin synthesis (어리연꽃 추출물이 α-MSH 유도에 의한 멜라닌 생성 억제에 미치는 영향)

  • Kim, Dong-Hee;Kim, You-Ah;Yu, Jae-Myo;Park, Chae-Bin;Park, Byoung-Jun;Park, Tae-Soon
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.327-332
    • /
    • 2017
  • In this study, the whitening activity of Nymphoides indica extract in B16F10 cells were measured. Inhibition rate of tyrosinase from mushroom was 42% at $1,000{\mu}g/mL$. And inhibition of tyrosinase and melanin biosynthesis in B16F10 cells were 26 and 25% at $5{\mu}g/mL$, respectively. The expression levels of cAMP and protein kinase A (PKA), which are higher levels of melanin-related factors, were found to be decreased in a dose-dependent manner. In addition, the expression rate of protein and mRNA of tyrosinase, tyrosinase related protein 1 (TRP1), tyrosinase related protein 2 (TRP2) and microphthalmia associated transcription factor (MITF). In this study, it was confirmed that the N. indica extract effectively inhibited the activity of tyrosinase, TRP1, TRP2 and MITF as well as the activity of PKA by effectively inhibiting cAMP. Therefore, it was confirmed that the N. indica extract has high value as a functional material.

EGFR Analysis in Cytologic Samples of Lung Adenocarcinoma by Microdissection (미세 절제에 의한 폐 선암 세포 검체에서 EGFR 분석)

  • Han, Jeong Yeon;Lee, Hoon Taek;Oh, Seo Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.3
    • /
    • pp.125-131
    • /
    • 2015
  • The discovery of activating mutations in EGFR in a subset of lung adenocarcinomas was a major advance in our understanding of lung adenocarcinoma biology, and has led to groundbreaking studies that have demonstrated the efficacy of tyrosine kinase inhibitor therapy. Cytologic specimen procedures have become increasingly popular for obtaining diagnostic material in lung carcinomas. However, frequently the small amount of material or sparseness of tumor cells obtained from cytologic preparations limit the number of specialized studies, such as mutation analysis, that can be performed. In this study we used microdissection to isolate small numbers of tumor cells to assess for EGFR mutations from 76 cytological smear slides of patients with lung adenocarcinomas. We compared our results with previous molecular assays that had been performed on either surgical or cytology specimens as part of the patient's initial clinical work-up. Not only were we able to detect the identical EGFR mutation through the pyrosequencing, but we were also able to consistently detect the mutation from as few as 25 microdissected tumor cells. Furthermore, isolating a purer population of tumor cells resulted in increased sensitivity of mutation detection as we were able to detect mutations from microdissection-enriched cases. Therefore, microdissection can not only significantly increase the number of lung adenocarcinoma patients that can be screened for EGFR mutations, but can also facilitate the use of cytologic samples in the newly emerging field of molecular-based personalized therapies.

An Empirical Study of the Clinically Reportable Range in Clinical Chemistry (임상보고 가능범위의 실증적 연구)

  • Chang, Sang-Wu;Lee, Sang-Gon;Choi, Ho-Seong;Song, Eun-Young;Park, Yong-Won;Lee, In-Ae
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.39 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • The purpose of the clinically reportable range (CRR) in clinical chemistry is to estimate linearity in working range. The reportable range includes all results that may be reliably reported, and embraces two types of ranges: the analytical measurement range (AMR) is the range of analyte values that a method can directly measure on the specimen without any dilution, concentration, or other pretreatment not part of the usual assay process. CAP and JCAHO require linearity on analyzers every six months. The clinically reportable range is the range of analyte values that a method can measure, allowing for specimen dilution, concentration, or other pretreatment used to extend the direct analytical measurement range. The AMR cannot exceed the manufacturer's limits. Establishing AMR is easily accomplished with Calibration Verification Assessment and experimental Linearity. For example: The manufacturer states that the limits of the AST on their instrument are 0-1100. The lowest level that could be verified is 2. The upper level is 1241. The verified AMR of the instrument is 2-1241. The lower limit of the range is 2, because that is the lowest level that could be verified by the laboratory. The laboratory could not use the manufacturer's lower limit of 2 because they have not proven that the instrument values below 2 are valid. The upper limit of the range is 1241, because although the lab has shown that the instrument is linear to 1241, the manufacturer does not make that claim. The laboratory needs to demonstrate the accuracy and precision of the analyzer, as well the validation of the patient AMR. Linearity requirements have been eliminated from the CLIA regulations and from the CAP inspection criteria, however, many inspectors continue to feel that linearity studies are a part of good lab practice and should be encouraged. If a lab chooses to continue linearity studies, these studies must fully comply with the calibration/calibration verification requirements of CLIA and/or CAP. The results of lower limit and upper limit of clinically reportable range were total protein (2.1 - 79.9), albumin (1.3 - 39), total bilirubin (0.2 - 106.2), alkaline phosphatase (13 - 6928.2), aspartate aminotransferase (24 - 7446), alanine aminotransferase (13 - 6724.2), gamma glutamyl transpeptidase (16.64 - 9904.2), creatine kinase (15.26 - 4723.8), lactate dehydrogenase (127.66 - 13231.8), creatinine (0.4 - 129.6), blood urea nitrogen (8.67 - 925.8), uric acid (1.6 - 151.2), total cholesterol (48.52 - 3162), triglycerides (36.91 - 3367.8), glucose (31 - 4218), amylase (21 - 6694.2), calcium (3.1 - 118.2), inorganic phosphorus (1.11 - 108), HDL (11.74 - 666), NA (58.3 - 1800), K (1.0 - 69.6), CL (38 - 1230).

  • PDF

Growth Inhibition of Human Hepatoma and Bladder Carcinoma Cells by DNA Topoisomerae Inhibitor β-lapachone (DNA topoisomerase 억제제인 β-lapachone에 의한 인체 간암 및 방광암세포 증식억제에 관한 연구)

  • Choi Da Yean;Lee Jae Il;Chung Hyun Sup;Seo Han Gyeol;Woo Hyun Joo;Choi Yung Hyun
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.323-331
    • /
    • 2005
  • The objective of the present study was to investigate the effect of $\beta-lapachone$, a quinone obtained from the bark of the lapacho tree (Tabebuia avellanedae) in South America, on the cell growth of human hepatoma (HepG2) and bladder (T24) carcinoma cells. Exposure of cancer cells to $\beta-lapachone$ resulted in growth inhibition, morphological changes and apoptosis in a concentration-dependent manner, which could be proved by MTT assay and flow cytometry analysis. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses revealed that $\beta-lapachone$ did not affect the levels of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21 (WAFl/CIPl) expression. However, the transcriptional factor Sp-l and proliferating cell nuclear antigen (PCNA) protein levels were significantly down-regulated by $\beta-lapachone$ in both cell lines. Moreover, $\beta-lapachone$ treatment caused a dose-dependent inhibition of the expression of telomere regulatory gene products such as human telomere reverse transcriptase (hTERT) and telomerase-associated protein-l (TEP-l). Taken together, these findings suggest that $\beta-lapachone$-induced inhibition of human hepatoma and bladder carcinoma cell proliferation is associated with the induction of apoptotic cell death via modulation of several major growth regulatory gene products, and provide important new insights into the additional mechanisms of the anti-cancer activity of $\beta-lapachone$.

Expression of Heat Shock Protein and Antioxidant Genes in Rice Leaf Under Heat Stress

  • Lee, Dong-Gi;Ahsan, Nagib;Kim, Yong-Goo;Kim, Kyung-Hee;Lee, Sang-Hoon;Lee, Ki-Won;Rahman, Md. Atikur;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.3
    • /
    • pp.159-166
    • /
    • 2013
  • We have previously investigated the proteome changes of rice leaves under heat stress (Lee et al. in Proteomics 2007a, 7:3369-3383), wherein a group of antioxidant proteins and heat shock proteins (HSPs) were found to be regulated differently. The present study focuses on the biochemical changes and gene expression profiles of heat shock protein and antioxidant genes in rice leaves in response to heat stress ($42^{\circ}C$) during a wide range of exposure times. The results show that hydrogen peroxide and proline contents increased significantly, suggesting an oxidative burst and osmotic imbalance under heat stress. The mRNA levels of chaperone 60, HSP70, HSP100, chloroplastic HSP26, and mitochondrial small HSP responded rapidly and showed maximum expression after 0.5 or 2 h under heat stress. Transcript levels of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and Cu-Zn superoxide dismutase (Cu-Zn SOD) showed a rapid and marked accumulation upon heat stress. While prolonged exposure to heat stress resulted in increased transcript levels of monodehydroascorbate reductase, peroxidase, glyoxalase 1, glutathione reductase, thioredoxin peroxidase, 2-Cysteine peroxiredoxin, and nucleoside diphosphate kinase 1, while the transcription of catalase was suppressed. Consistent with their changes in gene expression, the enzyme activities of APX and DHAR also increased significantly following exposure to heat stress. These results suggest that oxidative stress is usually caused by heat stress, and plants apply complex HSP- and antioxidant-mediated defense mechanisms to cope with heat stress.