• Title/Summary/Keyword: Kinase

Search Result 4,541, Processing Time 0.032 seconds

In Vitro and In Vivo Effects of Piceatannol and Resveratrol on Glucose Control and TLR4-NF-κB Pathway (피세아테놀과 레스베라트롤의 혈당조절 및 TLR4-NF-κB 경로 조절 작용)

  • Lee, Hee Jae;Lee, Hae-Jeung;Yang, Soo Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.2
    • /
    • pp.267-272
    • /
    • 2017
  • Piceatannol (PIC) is a natural hydroxylated analog of resveratrol (RSV), which is a polyphenol known to extend lifespan by stimulating sirtuins. The aim of this study was to investigate the effects of PIC and RSV on the toll-like receptor 4 (TLR4)-nuclear factor kappa B ($NF-{\kappa}B$) pathway in mouse hepatocytes and an obese/diabetic KK/HlJ mouse model. AML12 mouse hepatocytes in the absence or presence of palmitic acids (PA) were treated with PIC ($50{\mu}M$) or RSV ($50{\mu}M$). Male KK/HlJ mice at 20 weeks of age were divided into three subgroups as follows: 1) obese and diabetic control (KK), 2) KK_PIC, and 3) KK_RSV. PIC and RSV were administered orally at a dose of 10 mg/kg/d for 4 weeks. Four weeks of PIC and RSV treatment did not affect body weight or food intake in KK mice. Serum fasting blood glucose was significantly reduced in KK_PIC, and 2 h oral glucose tolerance test area under the curve was significantly reduced by PIC and RSV treatment in KK mice. PIC tended to improve homeostasis model assessment of the insulin resistance index (HOMA-IR) and HOMA beta-cells in diabetic KK mice. TLR4 and $NF-{\kappa}B$ were down-regulated by PIC and RSV treatments in hepatocytes in the absence or presence of PA. Insulin receptor, AMP-activated protein kinase, peroxisome proliferator-activated receptor gamma, nucleotide oligomerization domain-like receptor family pyrin domain-containing 3, interleukin-1, and $NF-{\kappa}B$ were altered in PIC-treated livers. Collectively, PIC and RSV inhibited the $TLR4-NF-{\kappa}B$ pathway, and PIC seems to be more effective than RSV in the regulation of analyzed targets, which are involved in insulin signaling and inflammation in vivo.

Autophagy Inhibition with Monensin Enhances Cell Cycle Arrest and Apoptosis Induced by mTOR or Epidermal Growth Factor Receptor Inhibitors in Lung Cancer Cells

  • Choi, Hyeong Sim;Jeong, Eun-Hui;Lee, Tae-Gul;Kim, Seo Yun;Kim, Hye-Ryoun;Kim, Cheol Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.75 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Background: In cancer cells, autophagy is generally induced as a pro-survival mechanism in response to treatment-associated genotoxic and metabolic stress. Thus, concurrent autophagy inhibition can be expected to have a synergistic effect with chemotherapy on cancer cell death. Monensin, a polyether antibiotic, is known as an autophagy inhibitor, which interferes with the fusion of autophagosome and lysosome. There have been a few reports of its effect in combination with anticancer drugs. We performed this study to investigate whether erlotinib, an epidermal growth factor receptor inhibitor, or rapamycin, an mammalian target of rapamycin (mTOR) inhibitor, is effective in combination therapy with monensin in non-small cell lung cancer cells. Methods: NCI-H1299 cells were treated with rapamycin or erlotinib, with or without monensin pretreatment, and then subjected to growth inhibition assay, apoptosis analysis by flow cytometry, and cell cycle analysis on the basis of the DNA contents histogram. Finally, a Western blot analysis was done to examine the changes of proteins related to apoptosis and cell cycle control. Results: Monensin synergistically increases growth inhibition and apoptosis induced by rapamycin or erlotinib. The number of cells in the sub-$G_1$ phase increases noticeably after the combination treatment. Increase of proapoptotic proteins, including bax, cleaved caspase 3, and cleaved poly(ADP-ribose) polymerase, and decrease of anti-apoptotic proteins, bcl-2 and bcl-xL, are augmented by the combination treatment with monensin. The promoters of cell cycle progression, notch3 and skp2, decrease and p21, a cyclin-dependent kinase inhibitor, accumulates within the cell during this process. Conclusion: Our findings suggest that concurrent autophagy inhibition could have a role in lung cancer treatment.

Cordycepin inhibits lipopolysaccharide-induced cell migration and invasion in human colorectal carcinoma HCT-116 cells through down-regulation of prostaglandin E2 receptor EP4

  • Jeong, Jin-Woo;Park, Cheol;Cha, Hee-Jae;Hong, Su Hyun;Park, Shin-Hyung;Kim, Gi-Young;Kim, Woo Jean;Kim, Cheol Hong;Song, Kyoung Seob;Choi, Yung Hyun
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.532-537
    • /
    • 2018
  • Prostaglandin $E_2$ ($PGE_2$), a major product of cyclooxygenase-2 (COX-2), plays an important role in the carcinogenesis of many solid tumors, including colorectal cancer. Because $PGE_2$ functions by signaling through $PGE_2$ receptors (EPs), which regulate tumor cell growth, invasion, and migration, there has been a growing amount of interest in the therapeutic potential of targeting EPs. In the present study, we investigated the role of EP4 on the effectiveness of cordycepin in inhibiting the migration and invasion of HCT116 human colorectal carcinoma cells. Our data indicate that cordycepin suppressed lipopolysaccharide (LPS)-enhanced cell migration and invasion through the inactivation of matrix metalloproteinase (MMP)-9 as well as the down-regulation of COX-2 expression and $PGE_2$ production. These events were shown to be associated with the inactivation of EP4 and activation of AMP-activated protein kinase (AMPK). Moreover, the EP4 antagonist AH23848 prevented LPS-induced MMP-9 expression and cell invasion in HCT116 cells. However, the AMPK inhibitor, compound C, as well as AMPK knockdown via siRNA, attenuated the cordycepin-induced inhibition of EP4 expression. Cordycepin treatment also reduced the activation of CREB. These findings indicate that cordycepin suppresses the migration and invasion of HCT116 cells through modulating EP4 expression and the AMPK-CREB signaling pathway. Therefore, cordycepin has the potential to serve as a potent anti-cancer agent in therapeutic strategies against colorectal cancer metastasis.

Transduced Tat-Annexin protein suppresses inflammation-associated gene expression in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells

  • Lee, Sun-Hwa;Kim, Dae-Won;Back, Su-Sun;Hwang, Hyun-Sook;Park, Eun-Young;Kang, Tae-Cheon;Kwon, Oh-Shin;Park, Jong-Hoon;Cho, Sung-Woo;Han, Kyu-Hyung;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.484-489
    • /
    • 2011
  • Annexin-1 (ANX1) is an anti-inflammatory protein as well as an important modulator in inflammation. However, the precise action of ANX1 remains unclear. To elucidate the protective effects of ANX1 on lipopolysaccharide (LPS)-induced murine macrophage Raw 264.7 cells, we constructed a cell-permeable Tat-ANX1 protein. The transduced Tat-ANX1 protein markedly inhibited the expression of cyclooxygenase-2, production of prostaglandin $E_2$, and generation of pro-inflammatory cytokines in the cells. Furthermore, transduced Tat-ANX1 protein caused a significant reduction in the activation of nuclear factor-kappa B (NF-${\kappa}B$) and mitogen-activated protein kinase (MAPK). The results indicate that Tat-ANX1 inhibits the production of inflammatory response cytokines and enzymes by blocking NF-${\kappa}B$ and MAPK. Therefore, Tat-ANX1 protein may be useful as a therapeutic agent against various inflammatory diseases.

Ganglioside GM1 influences the proliferation rate of mouse induced pluripotent stem cells

  • Ryu, Jae-Sung;Chang, Kyu-Tae;Lee, Ju-Taek;Lim, Malg-Um;Min, Hyun-Ki;Na, Yoon-Ju;Lee, Su-Bin;Moussavou, Gislain;Kim, Sun-Uk;Kim, Ji-Su;Ko, Kinarm;Ko, Kisung;Hwang, Kyung-A;Jeong, Eun-Jeong;Lee, Jeong-Woong;Choo, Young-Kug
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.713-718
    • /
    • 2012
  • Gangliosides play important roles in the control of several biological processes, including proliferation and transmembrane signaling. In this study, we demonstrate the effect of ganglioside GM1 on the proliferation of mouse induced pluripotent stem cells (miPSCs). The proliferation rate of miPSCs was lower than in mouse embryonic stem cells (mESCs). Fluorescence activated cell sorting analysis showed that the percentage of cells in the G2/M phase in miPSCs was lower than that in mESCs. GM1 was expressed in mESCs, but not miPSCs. To confirm the role of GM1 in miPSC proliferation, miPSCs were treated with GM1. GM1-treated miPSCs exhibited increased cell proliferation and a larger number of cells in the G2/M phase. Furthermore, phosphorylation of mitogen-activated protein kinases was increased in GM1-treated miPSCs.

Inhibition of Migration and Invasion of Human Bladder Cancer 5637 cells by Hwangheuk-san (5637 인체 방광암세포의 이동성과 침윤성에 미치는 황흑산(黃黑散)의 영향)

  • Shim, Won-suk;Kim, Min-serh;Park, Sang-eun;Choi, Yung-hyun;Hong, Sang-hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.37 no.1
    • /
    • pp.65-76
    • /
    • 2016
  • Objectives: The purpose of this study was to identify the inhibitory effects of Hwangheuk-san (HHS), a Korean multi-herb formula comprising four medicinal herbs, on cell migration and invasion, two critical cellular processes that are often deregulated during metastasis, using the human bladder cancer 5637 cell line.Methods: Cell viability, motility, and invasion were assessed by 3-(4,5-dimethyl-2 thiazolyl)-2,5-diphnyl-2H-tetrazolium bromide (MTT), wound healing migration, and Transwell assays, respectively. Gene expression was detected by Western blot analysis. In addition, the activities of matrix metalloproteinases (MMPs) and the values for transepithelial electrical resistance (TER) were analyzed using a Gelatinase Activity Assay Kit and an Epithelial Tissue Voltohmmeter, respectively.Results: Our data indicated that within the concentration range that was not cytotoxic, HHS effectively inhibited the cell motility and invasiveness of 5637 cells. HHS markedly decreased the expression and activity of MMP-2 and MMP-9, which was associated with unregulation of tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2. Further investigation revealed that phosphorylation of phosphatidylinositol 3-kinase (PI3K) and AKT was decreased in HHS-treated 5637 cells, and a PI3K/AKT inhibitor synergistically reduced the inhibition of migration and invasion and also inactivated MMP-2 and MMP-9. Moreover, HHS increased the tightening of tight junctions (TJs), which was demonstrated by an increase in the TER, and reduced the expression the levels of claudin family members (claudin-3 and -4), which are major components involved in the tightening of TJs.Conclusions: The present findings demonstrated that HHS attenuated the migration and invasion of bladder cancer 5637 cells by modulating the activity of the PI3K/Akt signaling pathway and also through TJ tightening.

Pyrrole-Derivative of Chalcone, (E)-3-Phenyl-1-(2-Pyrrolyl)-2-Propenone, Inhibits Inflammatory Responses via Inhibition of Src, Syk, and TAK1 Kinase Activities

  • Yang, Sungjae;Kim, Yong;Jeong, Deok;Kim, Jun Ho;Kim, Sunggyu;Son, Young-Jin;Yoo, Byong Chul;Jeong, Eun Jeong;Kim, Tae Woong;Han Lee, In-Sook;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • (E)-3-Phenyl-1-(2-pyrrolyl)-2-propenone (PPP) is a pyrrole derivative of chalcone, in which the B-ring of chalcone linked to ${\beta}$-carbon is replaced by pyrrole group. While pyrrole has been studied for possible Src inhibition activity, chalcone, especially the substituents on the B-ring, has shown pharmaceutical, anti-inflammatory, and anti-oxidant properties via inhibition of NF-${\kappa}B$ activity. Our study is aimed to investigate whether this novel synthetic compound retains or enhances the pharmaceutically beneficial activities from the both structures. For this purpose, inflammatory responses of lipopolysaccharide (LPS)-treated RAW264.7 cells were analyzed. Nitric oxide (NO) production, inducible NO synthase (iNOS) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) mRNA expression, and the intracellular inflammatory signaling cascade were measured. Interestingly, PPP strongly inhibited NO release in a dose-dependent manner. To further investigate this anti-inflammatory activity, we identified molecular pathways by immunoblot analyses of nuclear fractions and whole cell lysates prepared from LPS-stimulated RAW264.7 cells with or without PPP pretreatment. The nuclear levels of p50, c-Jun, and c-Fos were significantly inhibited when cells were exposed to PPP. Moreover, according to the luciferase reporter gene assay after cotransfection with either TRIF or MyD88 in HEK293 cells, NF-${\kappa}B$-mediated luciferase activity dose-dependently diminished. Additionally, it was confirmed that PPP dampens the upstream signaling cascade of NF-${\kappa}B$ and AP-1 activation. Thus, PPP inhibited Syk, Src, and TAK1 activities induced by LPS or induced by overexpression of these genes. Therefore, our results suggest that PPP displays anti-inflammatory activity via inhibition of Syk, Src, and TAK1 activity, which may be developed as a novel anti-inflammatory drug.

Honokiol Inhibits Nitric Oxide-Induced Apoptosis in Rabbit Articular Chondrocytes via PI-3K/AKT Pathway (Honokiol에 의한 토끼의 무릎 연골세포에서 PI-3K/AKT pathway를 통하여 nitric oxide에 의해 유도되는 세포사멸의 억제)

  • Lee, Won-Kil;Kim, Song-Ja
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1443-1450
    • /
    • 2010
  • Honokiol is a small molecular weight ligand originally isolated from the Chinese medicinal herb Magnolia officinalis, a plant used in traditional Chinese and Japanese medicine [9]. In a previous study, the effects of honokiol were shown to have anti-angiogenic, anti-invasive and anti-proliferative activities in a variety of cancers [1,3,4,11,13,17,24,29,30]. We showed previously that direct production of nitric oxide (NO) by treatment of NO donor, sodium nitroprusside (SNP), led to apoptosis in rabbit articular chondrocytes [15,16]. This study confirmed that NO-induced apoptosis was suppressed by honokiol treatment in a dose-dependent manner as determined by cell phenotype, MTT assay, Western blot analysis and FACS analysis in articular chondrocytes. Treatment of honokiol inhibited SNP-induced expression of p53 as well as DNA fragmentation in articular chondrocytes, but increased expressionof pro-caspase-3. Inhibition of SNP-induced apoptosis by honokiol treatment was rescued by LY294002, the specific inhibitors of phosphoinositide 3-kinase (PI-3K) in articular chondrocytes. Our results indicate that honokiol inhibits NO-induced apoptosis via PI-3K/AKT pathway in rabbit articular chondrocytes.

Involvement of a LiCl-Induced Phosphoprotein in Pigmentation of the Embryonic Zebrafish (Danio rerio) (LiCl에 의해 유도되는 phosphoprotein이 embryonic zebrafish (Danio rerio)의 pigmentation에 미치는 영향)

  • Jin, Eun-Jung;Thibaudeau, Giselle
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1219-1224
    • /
    • 2008
  • The embryonic zebrafish (Danio rerio) is rapidly becoming an important model organism for studies of early events in vertebrate development. Neural crest-derived pigment cell precursors of the embryonic zebrafish give rise to melanophores, xanthophores, and/or iridophores. Cell-signaling mechanisms related to the development of pigmentation and pigment pattern formation remain obscure. In this study, zebrafish embryos were treated with various signaling-related molecules - LiCl (an inositol-phosphatase inhibitor), forskolin (a protein kinase-A activator), a combination of LiCl/forskolin, and LiCl/heparin (an IP3 inhibitor) in order to identify the mechanisms involved in pigmentation. LiCl treatment resulted in ultrastructural and morphological alterations of melanophores. To identify the possible proteins responsible for this ultrastructural and morphological change, phosphorylation patterns in vitro and in vivo were analyzed. LiCl and LiCl/forskolin treatment elicited dramatic increases in the phosphorylation of a 55-kDa protein which was inhibited by heparin treatment. LiCl treatment also induced phosphorylation of a 55-kDa protein in melanophores purified from adult zebrafish. Collectively these results suggest that a LiCl-induced 55-kDa phosphoprotein plays a role in melanophore morphology and ultrastructure and ultimately effects gross pigmentation.

The Anti-cancer Effects of Bigihwan, Daechilgithang, and Mokwhyangbinranghwan Ethanol Extracts in Human Hepatocellular Carcinoma Cells (인체 간암세포에서 비기환(肥氣丸), 대칠기탕(大七氣湯) 및 목향빈랑환(木香檳榔丸)의 항암 활성 비교)

  • Kim, So Young;Hong, Su Hyun;Choi, Sung Hyun;Cheong, JaeHun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.460-467
    • /
    • 2020
  • Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers in the word. Although radiation and chemotherapy are generally effective, there are various side effects that greatly limit the effectiveness of these treatments. Therefore, traditional herbs may have potential as important resources for the discovery of liver cancer therapeutics. In this study, we selected three Korean herbal medicine formulas from the Donguibogam, namely Bigihwan (BGH), Daechilgithang (DCGT), and Mokwhyangbinranghwan (MHBRH), and evaluated their anti-cancer effects on HCC cells. According to our results of three ethanol extracts, BGH was more effective at suppressing HCC growth than DCGT or MHBRH. Furthermore, flow cytometry analysis showed that inhibition of HCC proliferation by the three extracts was associated with the induction of apoptosis and autophagy. In particular, BGH significantly increased mitochondrial impairment and showed the possibility of inducing mitophagy in comparison with the other two extracts. BGH prominently upregulated the levels of microtubule-associated protein light chain-3 which was accompanied by a decrease in the expression of anti-apoptotic Bcl-2 without altering the expression of pro-apoptotic Bax. In addition, the levels of PTEN-induced kinase 1 were also markedly increased in BGH-treated HCC cells. Moreover, autophagy blocking improved cell viability and reduced apoptosis after the three treatments, indicating that autophagy by these extracts enhances HCC cells against cytotoxicity. In conclusion, our findings show that BGH demonstrates the highest anti-cancer activity among the three formulas and inhibits the proliferation of HCC cells through autophagy induction.