Browse > Article
http://dx.doi.org/10.5352/JLS.2008.18.9.1219

Involvement of a LiCl-Induced Phosphoprotein in Pigmentation of the Embryonic Zebrafish (Danio rerio)  

Jin, Eun-Jung (Faculty of Biological Sciences, College of Natural Sciences, Wonkwang University)
Thibaudeau, Giselle (Department of Biological Sciences, Mississippi State University)
Publication Information
Journal of Life Science / v.18, no.9, 2008 , pp. 1219-1224 More about this Journal
Abstract
The embryonic zebrafish (Danio rerio) is rapidly becoming an important model organism for studies of early events in vertebrate development. Neural crest-derived pigment cell precursors of the embryonic zebrafish give rise to melanophores, xanthophores, and/or iridophores. Cell-signaling mechanisms related to the development of pigmentation and pigment pattern formation remain obscure. In this study, zebrafish embryos were treated with various signaling-related molecules - LiCl (an inositol-phosphatase inhibitor), forskolin (a protein kinase-A activator), a combination of LiCl/forskolin, and LiCl/heparin (an IP3 inhibitor) in order to identify the mechanisms involved in pigmentation. LiCl treatment resulted in ultrastructural and morphological alterations of melanophores. To identify the possible proteins responsible for this ultrastructural and morphological change, phosphorylation patterns in vitro and in vivo were analyzed. LiCl and LiCl/forskolin treatment elicited dramatic increases in the phosphorylation of a 55-kDa protein which was inhibited by heparin treatment. LiCl treatment also induced phosphorylation of a 55-kDa protein in melanophores purified from adult zebrafish. Collectively these results suggest that a LiCl-induced 55-kDa phosphoprotein plays a role in melanophore morphology and ultrastructure and ultimately effects gross pigmentation.
Keywords
Cell-signaling; LiCl; phosphorylation; pigmentation; zebrafish; 55-kDa protein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kashina, A. S., I. V. Semenova, P. A. Ivanov, E. S. Potekhina, I. Zaliapin and V. I. Rodionov. 2004. Protein kinase A, which regulates intracellular transport, forms complexes with molecular motors on organelles. Curr. BioI. 4, 1877-1881.
2 Thaler, C. D. and L. T. Haimo. 1992. Control of organelle transport in melanophores: regulation of $Ca^{2+}$ and cAMP levels. Cell Motil. Cytoskeleton 22, 175-184.   DOI   ScienceOn
3 Rodionov, V. I., F. K. Gyoeva and V. I. Gelfand. 1991. Kinesin is responsible for centrifugal movement of pigment granules in melanophores, Proc. Natl. Acad. Sci. USA 88, 4956-4960.   DOI   ScienceOn
4 Rozdzia, M. M. and L. T. Haimo. 1986. Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation. Cell 47, 1061-1070.   DOI   ScienceOn
5 Muceniece, R., K. Saleniece, U. Riekstina, L. Krigere, G. Tirzitis and J. Ancans. 2007. Betulin binds to melanocortin receptors and antagonizes alpha-melanocyte stimulating hormone induced cAMP generation in mouse melanoma cells. Cell Biochem. Funct. 25, 591-596.   DOI   ScienceOn
6 Passeron, T., P. Bahadoran, C. Bertolotto, C. Chiaverini, R. Busca, G. Valony, K. Bille, J. P. Ortonne and R. Ballotti. 2004. Cyclic AMP promotes a peripheral distribution of melanosomes and stimulates melanophilin/Slac2-a and actin association. FASEB J. 18, 989-991.
7 Huber, W. E., E. R. Price, H. R. Widlund, J. Du, I. J. Davis, M. Wegner and D. E. Fisher. 2003. A tissue-restricted cAMP transcriptional response: SOX10 modulates alpha-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. J. BioI. Chem. 278, 45224-45230.   DOI   ScienceOn
8 Thaler, C. D. and L. T. Haimo. 1990. Regulation of organelle transport in melanophores by calcineurin. J. Cell BioI. 111, 1939-1948.   DOI   ScienceOn
9 Jin, E. J. and G. Thibaudeau. 1999. Effects of lithium on pigmentationin the embryonic zebrafish (Brachydanio rerio). Biochem. et Biophysic. ACTA 1449, 93-99.   DOI   ScienceOn
10 Berridge, M. J. and R. F. Irvine. 1989. Inositol phosphates and cell signalling. Nature 341, 197-203   DOI   ScienceOn
11 Berridge, M. J., C. P. Downes and M. R. Hanley. 1989. Neural and developmental actions of lithium: a unifying hypothesis. Cell 159, 411-419.
12 Berridge, M. J. 1993. Inositol trisphosphate and calcium signalling. Nature 361, 315-325.   DOI   ScienceOn
13 Busa, W. B. and R. L. Gimlich. 1989. Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog. Dev. BioI. 132, 315-340.   DOI   ScienceOn
14 Maslanski, J. A., L. Leshko and W. B. Busa. 1992. Lithium-sensitive production of inositol phosphates during amphibian embryonic mesoderm induction. Science 256, 243-247.   DOI
15 Stachel, S. E., D. J. Grunwald and P. Z. Myers. 1993. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish, Development 117, 1261-1274.
16 Aspengren, S., H. N. Skold, G. Quiroga, L. Martensson and M. Wallin. 2003. Noradrenaline- and melatonin-mediated regulation of pigment aggregation in fish melanophores. Pigment Cell Res. 16, 59-64.   DOI   ScienceOn
17 Acharya, L. S. and M. Ovais. 2007. Alpha1 and alpha2 adrenoceptor mediated melanosome aggregatory responses in vitro in Oreochromis mossambica (Peters) melanophores. Indian J. Exp. BioI. 45, 984-991.
18 Kumazawa, T. and R. Fujii. 1984. Concurrent releases of norepinephrine and purines by potassium from adrenergic melanosome-aggregating nerve in Tilapia. Comp. Bioch. Physiol. 78, 263-266.   DOI   ScienceOn
19 Dupin, E., G. Calloni, C. Real, A. Goncalves-Trentin and N. M. Le Douarin. 2007. Neural crest progenitors and stem cells. C. R. BioI. 330, 521-529.   DOI   ScienceOn
20 Bronner-Fraser, M. and M. Garcia-Castro. 2008. Manipulations of neural crest cells or their migratory pathways. Methods Cell Biol. 87, 75-96.   DOI   ScienceOn
21 Barrallo-Gimeno, A and M. A. Nieto. 2006. Evolution of the neural crest. Adv. Exp. Med. BioI. 589, 235-244.   DOI
22 Minchin, J. E. and S. M. Hughes. 2008. Sequential actions of Pax3 and Pax7 drive xanthophore development in zebrafish neural crest. Dev. BioI. 317, 508-522.   DOI   ScienceOn
23 Aspengren, S. and M. Wallin. 2004. A role for spectrin in dynactin-dependent melanosome transport in Xenopus laevis melanophores. Pigment Cell Res. 17, 295-301.   DOI   ScienceOn
24 Arduini, B. L. and P. D. Henion. 2004. Melanophore sublineage-specific requirement for zebrafish touchtone during neural crest development. Mech. Dev. 121, 1353-1364.   DOI   ScienceOn
25 Quigley, I. K., J. M. Turner, R. J. Nuckels, J. L. Manuel, E. H. Budi, E. L. MacDonald and D. M. Parichy, 2004. Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes. Development 131, 6053-6069.   DOI   ScienceOn
26 Tar, K., C. Csortos, I. Czikora, G. Olah, S. F. Ma, R. Wadgaonkar, P. Gergely, J. G. Garcia and A. D. Verin. 2006. Role of protein phosphatase 2A in the regulation of endothelial cell cytoskeleton structure. J. Cell Biochem. 98, 931-953.   DOI   ScienceOn
27 Chan, W., R. Kozma, Y. Yasui, M. Inagaki, T. Leung, E. Manser and L. Lim. 2002. Vimentin intermediate filament reorganization by Cdc42: involvement of PAK and p70 S6 kinase. Eur. J. Cell Biol. 81, 692-701.   DOI   ScienceOn
28 Sayas, C. L., J. Avila and F. Wandosell. 2002. Regulation of neuronal cytoskeleton by lysophosphatidic acid: role of GSK-3. Biochim. Biophys. Acta. 1582, 144-153.   DOI   ScienceOn
29 Kural, C., A. S. Serpinskaya, Y. H. Chou, R. D. Goldman, V. I. Gelfand and P. R. Selvin. 2007. Tracking melanosomes inside a cell to study molecular motors and their interaction. Proc. NatI. Acad. Sci. USA. 104, 5378-5382.   DOI   ScienceOn