• Title/Summary/Keyword: Kif4A

Search Result 14, Processing Time 0.028 seconds

PtdIns(3,5)P2 5-phosphatase Fig4 Interacts with Kinesin Superfamily 5A (KIF5A) (PI(3,5)P2 5-phosphatase Fig4와 Kinesin superfamily 5A (KIF5A)의 결합)

  • Jang, Won Hee;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.14-19
    • /
    • 2014
  • Kinesin-1 consists of two heavy chains (KHCs), also called KIF5s, and two light chains (KLCs) that form a heterotetrameric complex. Here, we demonstrate the binding of a neuronal KHC, KIF5A, to the carboxyl (C)-terminal tail region of Fig4 (also known as Sac3), a phosphatase that removes the 5-phosphate from phosphatidylinositol-3,5-bisphosphate ($PtdIns(3,5)P_2$). Fig4 bound to the C-terminal region of KIF5A but not to other KHCs (KIF5B and KIF5C) and KLC1 in yeast two-hybrid assays. The interaction was further confirmed in a glutathione S-transferase pull-down assay and by co-immunoprecipitation. Anti-KIF5A antibody co-immunoprecipitated Fig4 with KIF5A from mouse brain extracts. These results suggest that kinesin-1 could transport the Fig4-associated protein complex or cargo in cells.

Glutamate-rich 4 Binds to Kinesin Superfamily Protein 5A (Glutamate-rich 4와 kinesin superfamily protein 5A와의 결합)

  • Se Young Pyo;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Sang Jin Kim;Mooseong Kim;Jung Goo Lee;Dae-Hyun Seog
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Intracellular cargo transport is mediated by molecular motor proteins, such as kinesin and cytoplasmic dynein. Kinesins make up a large subfamily of molecular motors. Kinesin-1 is a plus-end-directed molecular motor protein that moves various cargoes, such as organelles, protein complexes, and mRNAs, along a microtubule track. It consists of the kinesin superfamily protein (KIF) 5A, 5B, and 5C (also called kinesin heavy chains) and kinesin light chains (KLCs). Kinesin-1 interacts with many different binding proteins through its carboxyl (C)-terminal region of KIF5s and KLCs, but their binding proteins have not yet been fully identified. In this study, a yeast two-hybrid assay was used to identify the proteins that interact with the KIF5A specific C-terminal region. The assay revealed an interaction between KIF5A and glutamate-rich 4 (ERICH4). ERICH4 bound to the KIF5A specific the C-terminal region but did not interact with the C-terminal region of KIF5B or KIF3A (a motor protein of kinesin-2). In addition, KIF5A did not interact with another isoform, ERICH1. Glutathione S-transferase (GST) pull-downs showed that KIF5A interacts with GST-ERICH4 and GST-ERICH4-amino (N)-terminal but not with GST-ERICH4-C or GST alone. When co-expressed in HEK-293T cells, ERICH4 co-localized with KIF5A and co-immunoprecipitated with KIF5A and KLC but not KIF3B. Together, our findings suggest that ERICH4 is capable of binding to KIF5A and that it may serve as an adaptor protein that links kinesin-1 with cargo.

The β Subunit of Heterotrimeric G Protein Interacts Directly with Kinesin Heavy Chains, Kinesin-I (Kinesin-I의 kinesin heavy chains과 직접 결합하는 heterotrimeric G protein의 β subunit의 규명)

  • Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1166-1172
    • /
    • 2010
  • Kinesin-I exists as a tetramer of two heavy chains (KHCs, also called KIF5s), which contain the amino (N)-terminal motor domain and carboxyl (C)-terminal domain, as well as two light chains (KLCs), which bind to the KIF5s (KIF5A, KIF5B and KIF5C) stalk region. To identify the interaction proteins for KIF5A, yeast two-hybrid screening was performed and a specific interaction with the ${\beta}$ subunit of heterotrimeric G proteins ($G{\beta}$) was found. $G{\beta}$ bound to the amino acid residues between 808 and 935 of KIF5A and to other KIF5 members in the yeast two-hybrid assay. The WD40 repeat motif of $G{\beta}$ was essential for interaction with KIF5A. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to KIF5s specifically co-immunoprecipitated KIF5s associated with heterotrimeric G proteins from mouse brain extracts. These results suggest that kinesin-I motor protein transports heteroterimeric G protein attachment vesicles along microtubules in the cell.

Identification and Expression Patterns of kif3bz during the Zebrafish Embryonic Development

  • Lee, A-Ram;Rhee, Myung-Chull
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.411-418
    • /
    • 2009
  • We are reporting the identification, expression patterns, and possible biological functions of zebrafish kif3b (kif3bz) encoding 475 amino acids. Kif3Bz contains the kinesin motor domain, catalytic domain, KISc domain, and one single coiled coil domain. Phylogenetic analysis indicates that kif3bz is a highly conserved gene among the tested vertebrates. First of all, both maternal and zygotic messages of kif3bz were evenly distributed in the blastomeres at 2-cell stage. Its ubiquitous expression throughout the blastomeres continued till 40% epiboly. However, kif3bz transcripts became restricted in Kupffer's vesicle at tailbud and 6-somite stages. At 13-somite stage, kif3bz expression pattern became specific to the telencephalon, diencephalon, trigeminal placode, and somites. Such expression patterns were further intensified in the telencephalon, diencephalons, hind brain, pronephric ducts, optic vesicles, and spinal cord neurons in the 23-somite stage embryos, and last till 24 hpf. We discussed possible functions of Kif3Bz related to the vertebrate embryonic development.

Sorting Nexin 17 Interacts Directly with Kinesin Superfamily KIF1B${\beta}$ Protein

  • Seog, Dae-Hyun;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.199-204
    • /
    • 2008
  • KIF1B${\beta}$ is a member of the Kinesin superfamily proteins (KIFs), which are microtubule-dependent molecular motors that are involved in various intracellular organellar transport processes. KIF1B${\beta}$ is not restricted to neuronal systems, however, is widely expressed in other tissues, even though the function of KIF1B${\beta}$ is still unclear. To elucidate the KIF1B${\beta}$-binding proteins in non-neuronal cells, we used the yeast two-hybrid system, and found a specific interaction of KIF1B${\beta}$ and the sorting nexin (SNX) 17. The C-terminal region of SNX17 is required for the binding with KIF1B${\beta}$. SNX17 protein bound to the specific region of KIF1Bf3 (813-916. aa), but not to other kinesin family members. In addition, this specific interaction was also observed in the Glutathione S-transferase pull-down assay. An antibody to SNX17 specifically co-immunoprecipitated KIF1B${\beta}$ associated with SNX17 from mouse brain extracts. These results suggest that SNX17 might be involved in the KIF1B${\beta}$-mediated transport as a KIF1B${\beta}$ adaptor protein.

The Carboxyl-terminal Tail of a Heterotrimeric Kinesin 2 Motor Subunit Directly Binds to β2-tubulin (Heterotrimeric Kinesin 2 모터 단백질의 Carboxyl-말단과 β2-tubulin의 결합)

  • Jeong, Young Joo;Park, Sung Woo;Kim, Sang-Jin;Lee, Won Hee;Kim, Mooseong;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.369-375
    • /
    • 2019
  • Microtubules form through the polymerization of ${\alpha}-$ and ${\beta}-tubulin$, and tubulin transport plays an important role in defining the rate of microtubule growth inside cellular appendages, such as the cilia and flagella. Heterotrimeric kinesin 2 is a molecular motor member of the kinesin superfamily (KIF) that moves along the microtubules to transport multiple cargoes. It consists of two motor subunits (KIF3A and KIF3B) and a kinesin-associated protein 3 (KAP3), forming a heterotrimeric complex. Heterotrimeric kinesin 2 interacts with many different binding proteins through the cargo-binding domains of the KIF3s, but these binding proteins have not yet been specified. To identify these proteins for KIF3A, we performed yeast two-hybrid (Y2H) screening and found a specific interaction with ${\beta}2-tubulin$ (Tubb2), a microtubule component. Tubb2 was found to bind to the cargo-binding domain of KIF3A but did not interact with KIF3B, KIF5B, or kinesin light chain 1 in the Y2H assay. The carboxyl-terminal region of Tubb2 is essential for interaction with KIF3A. Other Tubb isoforms, including Tubb1, Tubb3, Tubb4, and Tubb5, also interacted with KIF3A in the Y2H screening. However, ${\alpha}1-tubulin$ (Tuba1) did not interact with KIF3A. In addition, an antibody to KIF3A specifically co-immunoprecipitated the KIF3B and KAP3 associated with Tubb2 from mouse brain extracts. In combination, these results suggest that a heterotrimeric kinesin 2 motor protein is capable of binding to tubulin and may transport it in cells.

The Role of Kif4A in Doxorubicin-Induced Apoptosis in Breast Cancer Cells

  • Wang, Hui;Lu, Changqing;Li, Qing;Xie, Jun;Chen, Tongbing;Tan, Yan;Wu, Changping;Jiang, Jingting
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.812-818
    • /
    • 2014
  • This study was to investigate the mechanism and role of Kif4A in doxorubicin-induced apoptosis in breast cancer. Using two human breast cancer cell lines MCF-7 (with wild-type p53) and MDA-MB-231 (with mutant p53), we quantitated the expression levels of kinesin super-family protein 4A (Kif4A) and poly (ADP-ribose) Polymerase-1 (PARP-1) by Western blot after doxorubicin treatment and examined the apoptosis by flow cytometry after treatment with doxorubicin and PARP-1 inhibitor, 3-Aminobenzamide (3-ABA). Our results showed that doxorubicin treatment could induce the apoptosis of MCF-7 and MDA-MB-231 cells, the down-regulation of Kif4A and upregulation of poly(ADP-ribose) (PAR). The activity of PARP-1 or PARP-1 activation was significantly elevated by doxorubicin treatment in dose- and time-dependent manners (P < 0.05), while doxorubicin treatment only slightly elevated the level of cleaved fragments of PARP-1 (P > 0.05). We further demonstrated that overexpression of Kif4A could reduce the level of PAR and significantly increase apoptosis. The effect of doxorubicin on apoptosis was more profound in MCF-7 cells compared with MDA-MB-231 cells (P < 0.05). Taken together, our results suggest that the novel role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells is achieved by inhibiting the activity of PARP-1.

The STAR RNA Binding Proteins SAM68, SLM-1 and SLM-2 Interact with Kinesin-I (Kinesin-I과 직접 결합하는 STAR RNA 결합 단백질인 SAM68, SLM-1과 SLM-2의 규명)

  • Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1226-1233
    • /
    • 2011
  • In neurons, kinesin is the molecular motor that transport cargos along microtubules. KIF5s (alias kinesin-I), are heterotetrameric motor conveying cargos, but the mechanism as to how they recognize and bind to a specific cargos has not yet been completely elucidated. To identify the interaction proteins for KIF5C, yeast two-hybrid screening was performed, and specific interaction with the $\underline{S}$am68-$\underline{l}$ike $\underline{m}$ammalian protein $\underline{2}$ (SLM-2), a member of the $\underline{s}$ignal $\underline{t}$ransducers and $\underline{a}$ctivators of $\underline{R}$NA (STAR) family of RNA processing proteins, was found. SLM-2 bound to the carboxyl (C)-terminal region of KIF5C and to other KIF5 members. The C-terminal domain of Sam68, SLM-1, SLM-2 was essential for interaction with KIF5C in the yeast two-hybrid assay. In addition, glutathione S-transferase (GST) pull-downs showed that SAM68, SLM-1, and SLM-2 specifically interacted to Kinesin-I complex. An antibody to SAM68 specifically co-immunoprecipitated SAM68 associated with KIF5s and coprecipitated with a specific set of mRNA. These results suggest that Kinesin-I motor protein transports RNA-associated protein complex in cells.

Ferritin, an Iron Storage Protein, Associates with Kinesin 1 through the Cargo-binding Region of Kinesin Heavy Chains (KHCs) (철 저장 단백질 ferritin과 kinesin 1 결합 규명)

  • Jang, Won Hee;Jeong, Young Joo;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.698-704
    • /
    • 2016
  • The intracellular transport of organelles and protein complexes is mediated by kinesin superfamily proteins (KIFs). The first kinesin, kinesin 1, was identified as a molecular motor protein that moves various organelles and protein complexes along the microtubule rails in cells. Kinesin 1 is a tetramer of two heavy chains (KHCs, also called KIF5s) and two kinesin light chains (KLCs). KIF5s interact with many different proteins through their tail region, but their binding proteins have not yet been fully identified. To identify the interaction proteins for KIF5A, we performed yeast two-hybrid screening and found a specific interaction with ferritin heavy chain (Frt-h), which has a role in iron storage and detoxification. Frt-h bound to the amino acid residues between 800 and 940 of KIF5A and to other KIF5s in the yeast two-hybrid assay. The coiled-coil domain of Frt-h is essential for interaction with KIF5A. In addition, ferritin light chain (Frt-l) interacted with KIF5s in the yeast two-hybrid assay. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to KHC specifically co-immunoprecipitated Frt-h and Frt-l from mouse brain extracts. These results suggest the kinesin 1 motor protein may transport the ferritin complex in cells.

The KIF1B (rs17401966) Single Nucleotide Polymorphism is not Associated with the Development of HBV-related Hepatocellular Carcinoma in Thai Patients

  • Sopipong, Watanyoo;Tangkijvanich, Pisit;Payungporn, Sunchai;Posuwan, Nawarat;Poovorawan, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2865-2869
    • /
    • 2013
  • Hepatitis B virus (HBV) infection can become chronic and if left untreated can progress to hepatocellular carcinoma (HCC).Thailand is endemic for HBV and HCC is one of the top five cancers, causing deaths among Thai HBV-infected males. A single nucleotide polymorphism (SNP) at the KIF1B gene locus, rs17401966, has been shown to be strongly associated with the development of HBV-related HCC. However, there are no Thai data on genotypic distribution and allele frequencies of rs17401966. Thai HBV patients seropositive for HBsAg (n=398) were therefore divided into two groups: a case group (chronic HBV with HCC; n=202) and a control group (HBV carriers without HCC; n=196). rs17401966 was amplified by polymerase chain reaction (PCR) and analyzed by direct nucleotide sequencing. The genotypic distribution of rs174019660 for homozygous major genotype (AA), heterozygous minor genotype (AG) and homozygous minor genotype (GG) in the case group was 49.5% (n=100), 40.1% (n=81) and 10.4% (n=21), respectively, and in controls was 49.5% (n=97), 42.3% (n=83) and 8.2% (n=16). Binary logistic regression showed that rs17401966 was not statistically associated with the risk of HCC development in Thai chronic HBV patients (p-value=0.998, OR=1.00 and 95% CI=0.68-1.48). In conclusion, the KIF1B gene SNP (rs174019660) investigated in this study showed no significant association with HBV-related HCC in Thai patients infected with HBV, indicating that there must be other mechanisms or pathways involved in the development of HCC.