Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0210

The Role of Kif4A in Doxorubicin-Induced Apoptosis in Breast Cancer Cells  

Wang, Hui (Department of Pathology, The Third Affiliated Hospital of Soochow University)
Lu, Changqing (Department of Pathology, The Third Affiliated Hospital of Soochow University)
Li, Qing (Department of Pathology, The Third Affiliated Hospital of Soochow University)
Xie, Jun (Department of Pathology, The Third Affiliated Hospital of Soochow University)
Chen, Tongbing (Department of Pathology, The Third Affiliated Hospital of Soochow University)
Tan, Yan (Department of Pathology, The Third Affiliated Hospital of Soochow University)
Wu, Changping (Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University)
Jiang, Jingting (Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University)
Abstract
This study was to investigate the mechanism and role of Kif4A in doxorubicin-induced apoptosis in breast cancer. Using two human breast cancer cell lines MCF-7 (with wild-type p53) and MDA-MB-231 (with mutant p53), we quantitated the expression levels of kinesin super-family protein 4A (Kif4A) and poly (ADP-ribose) Polymerase-1 (PARP-1) by Western blot after doxorubicin treatment and examined the apoptosis by flow cytometry after treatment with doxorubicin and PARP-1 inhibitor, 3-Aminobenzamide (3-ABA). Our results showed that doxorubicin treatment could induce the apoptosis of MCF-7 and MDA-MB-231 cells, the down-regulation of Kif4A and upregulation of poly(ADP-ribose) (PAR). The activity of PARP-1 or PARP-1 activation was significantly elevated by doxorubicin treatment in dose- and time-dependent manners (P < 0.05), while doxorubicin treatment only slightly elevated the level of cleaved fragments of PARP-1 (P > 0.05). We further demonstrated that overexpression of Kif4A could reduce the level of PAR and significantly increase apoptosis. The effect of doxorubicin on apoptosis was more profound in MCF-7 cells compared with MDA-MB-231 cells (P < 0.05). Taken together, our results suggest that the novel role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells is achieved by inhibiting the activity of PARP-1.
Keywords
doxorubicin; Kif4A; MCF-7; MDA-MB-231; PARP-1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alli, E., Sharma, V.B., Hartman, A.R., Lin, P.S., McPherson, L., and Ford, J.M. (2011). Enhanced sensitivity to cisplatin and gemcitabine in Brca1-deficient murine mammary epithelial cells. BMC Pharmacol. 11, 7.
2 Annunziata, C.M., and Bates, S.E. (2010). PARP inhibitors in BRCA1/BRCA2 germline mutation carriers with ovarian and breast cancer. F1000 Biol. Rep. 2.
3 Borysov, S.I., Granic, A., Padmanabhan, J., Walczak, C.E., and Potter, H. (2011). Alzheimer Abeta disrupts the mitotic spindle and directly inhibits mitotic microtubule motors. Cell Cycle 10, 1397-1410.   DOI
4 Campalans, A., Kortulewski, T., Amouroux, R., Menoni, H., Vermeulen, W., and Radicella, J.P. (2013). Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair. Nucleic Acids Res. 41, 3115-3129.   DOI   ScienceOn
5 Hydock, D.S., Lien, C.Y., Jensen, B.T., Parry, T.L., Schneider, C.M., and Hayward, R. (2012). Rehabilitative exercise in a rat model of doxorubicin cardiotoxicity. Exp. Biol. Med. 237, 1483-1492.   DOI   ScienceOn
6 Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917-921.   DOI   ScienceOn
7 Hu, C.K., Coughlin, M., Field, C.M., and Mitchison, T.J. (2011). KIF4 regulates midzone length during cytokinesis. Curr. Biol. 21, 815-824.   DOI   ScienceOn
8 Huambachano, O., Herrera, F., Rancourt, A., and Satoh, M.S. (2011). Double-stranded DNA binding domain of poly(ADP-ribose) polymerase-1 and molecular insight into the regulation of its activity. J. Biol. Chem. 286, 7149-7160.   DOI   ScienceOn
9 Ibragimova, I., and Cairns, P. (2011). Assays for hypermethylation of the BRCA1 gene promoter in tumor cells to predict sensitivity to PARP-inhibitor therapy. Methods Mol. Biol. 780, 277-291.   DOI   ScienceOn
10 Jacot, W., Thezenas, S., Senal, R., Viglianti, C., Laberenne, A.C., Lopez-Crapez, E., Bibeau, F., Bleuse, J.P., Romieu, G., and Lamy, P.J. (2013). BRCA1 promoter hypermethylation, 53BP1 protein expression and PARP-1 activity as biomarkers of DNA repair deficit in breast cancer. BMC Cancer 13, 523.   DOI   ScienceOn
11 Javle, M., and Curtin, N.J. (2011). The role of PARP in DNA repair and its therapeutic exploitation. Br. J. Cancer 105, 1114-1122.   DOI   ScienceOn
12 Martinez-Romero, R., Canuelo, A., Siles, E., Oliver, F.J., and Martinez-Lara, E. (2012). Nitric oxide modulates hypoxiainducible factor-1 and poly(ADP-ribose) polymerase-1 cross talk in response to hypobaric hypoxia. J. Appl. Physiol. 112, 816-823.   DOI   ScienceOn
13 Langelier, M.F., Planck, J.L., Roy, S., and Pascal, J.M. (2011). Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity. J. Biol. Chem. 286, 10690-10701.   DOI   ScienceOn
14 Lee Kraus, W., and Hottiger, M.O. (2013). PARP-1 and gene regulation: progress and puzzles. Mol. Aspects Med. 34, 1109-1123.   DOI   ScienceOn
15 Oonk, A.M., van Rijn, C., Smits, M.M., Mulder, L., Laddach, N., Savola, S.P., Wesseling, J., Rodenhuis, S., Imholz, A.L., and Lips, E.H. (2012). Clinical correlates of 'BRCAness' in triple-negative breast cancer of patients receiving adjuvant chemotherapy. Ann. Oncol. 23, 2301-2305.   DOI
16 Midorikawa, R., Takei, Y., and Hirokawa, N. (2006). KIF4 motor regulates activity-dependent neuronal survival by suppressing PARP-1 enzymatic activity. Cell 125, 371-383.   DOI   ScienceOn
17 Shrestha, S., Wilmeth, L.J., Eyer, J., and Shuster, C.B. (2012). PRC1 controls spindle polarization and recruitment of cytokinetic factors during monopolar cytokinesis. Mol. Biol. Cell 23, 1196-1207.   DOI
18 Stanisavljevic, J., Porta-de-la-Riva, M., Batlle, R., de Herreros, A.G., and Baulida, J. (2011). The p65 subunit of NF-kappaB and PARP1 assist Snail1 in activating fibronectin transcription. J. Cell Sci. 124, 4161-4171.   DOI   ScienceOn
19 Sukowati, C.H., Rosso, N., Pascut, D., Anfuso, B., Torre, G., Francalanci, P., Croce, L.S., and Tiribelli, C. (2012). Gene and functional up-regulation of the BCRP/ABCG2 transporter in hepatocellular carcinoma. BMC Gastroenterol. 12, 160.   DOI
20 Sun, S., Chen, Z., Li, L., Sun, D., Tian, Y., Pan, H., Bi, H., Huang, M., Zeng, S., and Jiang, H. (2012). The two enantiomers of tetrahydropalmatine are inhibitors of P-gp, but not inhibitors of MRP1 or BCRP. Xenobiotica 42, 1197-1205.   DOI   ScienceOn
21 Xu, Y., Diao, Y., Qi, S., Pan, X., Wang, Q., Xin, Y., Cao, X., Ruan, J., Zhao, Z., Luo, L., et al. (2013). Phosphorylated Hsp27 activates ATM-dependent p53 signaling and mediates the resistance of MCF-7 cells to doxorubicin-induced apoptosis. Cell. Signal. 25, 1176-1185.   DOI   ScienceOn
22 Villar, V.H., Vogler, O., Martinez-Serra, J., Ramos, R., Calabuig-Farinas, S., Gutierrez, A., Barcelo, F., Martin-Broto, J., and Alemany, R. (2012). Nilotinib counteracts P-glycoproteinmediated multidrug resistance and synergizes the antitumoral effect of doxorubicin in soft tissue sarcomas. PLoS One 7, e37735.   DOI
23 Wandke, C., Barisic, M., Sigl, R., Rauch, V., Wolf, F., Amaro, A.C., Tan, C.H., Pereira, A.J., Kutay, U., Maiato, H., et al. (2012). Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis. J. Cell Biol. 198, 847-863.   DOI   ScienceOn
24 Wu, G., Zhou, L., Khidr, L., Guo, X.E., Kim, W., Lee, Y.M., Krasieva, T., and Chen, P.L. (2008). A novel role of the chromokinesin Kif4A in DNA damage response. Cell Cycle 7, 2013-2020.   DOI
25 Zaremba, T., Thomas, H., Cole, M., Plummer, E.R., and Curtin, N.J. (2010). Doxorubicin-induced suppression of poly(ADP-ribose) polymerase-1 (PARP-1) activity and expression and its implication for PARP inhibitors in clinical trials. Cancer Chemother. Pharmacol. 66, 807-812.   DOI
26 Zheng, Z., Aojula, H., and Clarke, D. (2010). Reduction of doxorubicin resistance in P-glycoprotein overexpressing cells by hybrid cell-penetrating and drug-binding peptide. J. Drug Target. 18, 477-487.   DOI   ScienceOn
27 Munoz-Gamez, J.A., Martin-Oliva, D., Aguilar-Quesada, R., Canuelo, A., Nunez, M.I., Valenzuela, M.T., Ruiz de Almodovar, J.M., De Murcia, G., and Oliver, F.J. (2005). PARP inhibition sensitizes p53-deficient breast cancer cells to doxorubicin-induced apoptosis. Biochem. J. 386, 119-125.   DOI   ScienceOn