• Title/Summary/Keyword: Kick Motor Nozzle

Search Result 17, Processing Time 0.032 seconds

Thermo-Elastic Analysis of the Spatially Reinforced Composite Nozzle (다방향으로 입체 보강된 복합재 노즐의 열탄성해석)

  • 유재석;김광수;이상의;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.100-105
    • /
    • 2002
  • This paper predicts the material properties of spatially reinforced composites (SRC) and analyzes the thermo-elastic behavior of a kick motor nozzle manufactured from that material. To find the appropriate SRC structure for the nozzle throat that satisfies given design conditions, the equivalent material properties of the SRC are predicted using the superposition method for those of rod and matrix. Studied are the elastic behavior, temperature distribution, and thermo-elastic behavior of a kick motor nozzle composed of carbon/carbon SRC as a throat part. The elastic deformation of the nozzle composed of 3D carbon/carbon SRC shows asymmetry in a circumferential direction. However, 4D carbon/carbon SRC nozzle shows uniform deformation in the circumferential direction. Stress concentration in connecting parts of the kick motor nozzle is ultimately high due to the high temperature gradient in each connecting part. The thermo-elastic deformations of both the 3D and the 4D SRC nozzles are uniform in the circumferential direction due to the isotropy of CTE of each SRC. The deformation of the 3D SRC nozzle is a slightly smaller than that of the 4D SRC nozzle in the nozzle throat, which is favorably effective on rocket thrust. The circumferential stress is the most critical component of the kick motor nozzle. The 4D SRC nozzle having 1,1,1,1.7 diameters in each direction has the smallest circumferential stress among several SRC nozzles.

  • PDF

KSLV-I Kick Motor Nozzle Hydro-Pressure Test (KSLV-1 Kick Motor 노즐 수압시험)

  • Yoo, Jae-Suk;Kim, Byung-Hun;Cho, In-Hyun;Jang, Young-Soon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.202-209
    • /
    • 2008
  • KSLV-1 2nd stage Kick Motor Nozzle was exposed to high temperature and pressure during the firing. Under the high pressure environment, Kick Motor Nozzle hydro-pressure test was done for verifying the structural safety of the nozzle. The differences with the KM hydro-pressure test [1] are that the real immerged heat resistance material is assembled and the throat heat resistance material is similar with the real one. The hydro-pressure tests were done for the two times of the 125 % of MEOP (975 psi) and the 153 % of the MEOP.

  • PDF

Prediction of Kick Motor Mass Variation (킥모터 무게 변화 예측)

  • Kil, Gyoung-Sub;Kho, Hyeon-Seok;Kim, Byung-Hun;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.203-206
    • /
    • 2008
  • Kick motor(KM) for KSLV-I second stage propulsion system is the main hardware that is necessary for launching satellite to it's track. The mass of the kick motor changes with combustion time because the heat insulator is ablated and propellant is used and slag is piled up. We predicted mass change with the flight time using ground combustion data of KM composed of case, propellant, nozzle, ignitor and slag. The mass prediction of kick motor can be used for calculating the two stage mass and center of gravity history.

  • PDF

The Flexible Seal Fabrication utilizing a rubber Injection Method (고무 인젝션 방법을 이용한 플렉시블 씰 제작)

  • Kim, Byung-Hun;Kwon, Tae-Hoon;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.707-710
    • /
    • 2010
  • The most important things in the KSLV-I Kick Motor nozzle is a development of flexible seal that is utilized to drive a movable nozzle. Especially, a manufacturing technology of flexible seal is one of the key element in the Kick Motor nozzle development. The method used to produce flexible seal in the Kick Motor is injection method. Mold design technology, rubber injection technic and molding process through flexible seal manufacture has been established. After manufacturing, X-Ray inspection have been carried out to confirm a adhesive and internal array of flexible seal.

  • PDF

KSR- III 킥모터용 노즐의 열탄성 해석 및 시험

  • Cho, In-Hyun;Oh, Seung-Hyub;Yu, Jae-Suk;Rho, Tae-Ho
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.153-162
    • /
    • 2002
  • This paper predicted the engineering constants of spatially reinforced carbon/ carbon composites and analyzed the mechanical behaviour of the kick motor nozzle. Those equivalent engineering constants are used to analyze the mechanical behaviour of the kick motor nozzle. Because the distribution of equivalent engineering constants is varying as change its structure, we made a program to predict engineering constants of spatially reinforced composites. The kick motor nozzle consists of graphite or spatially reinforced carbon/ carbon composites for the nozzle throat, carbon/ phenol for the nozzle entrance and the expansion part, and steel for the outer surface of the expansion part. The 4-D carbon/ carbon composite shows the smallest deformed shape of the nozzle throat, which has a favorable effect on the rocket thrust, and the most uniform deformation of all nozzle throat materials. In addition to analysis, ground firing tests of 4D C/ C nozzle throat and graphite nozzle throat were performed.

  • PDF

Preliminary Design of High Altitude Test Facility for Kick Motor of KSLV-I Development (KSLV-I 킥모터용 고공환경모사 시험설비 구축을 위한 기본설계)

  • Kim, Yong-Wook;Lee, Jung-Ho;Yu, Byung-Il;Kim, Sang-Heon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.180-187
    • /
    • 2007
  • Korea Aerospace Research Institute(KARI) is developing Korea Space Launch Vehicle(KSLV). KSLV-I is composed of liquid propulsion system for the first stage and apogee kick motor as the second stage. Kick motor has a high expansion ratio nozzle and its starting altitude is 300km high. To verify the performance of kick motor, high altitude test facility (HATF) to simulate its operating condition is necessary. This paper contains preliminary design for construction of HATF.

  • PDF

Research and Development of KSR-III Apogee Kick Motor (KSR-III Apogee Kick Motor 연구 및 개발)

  • 조인현;오승협;강선일;황종선
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.40-49
    • /
    • 2001
  • The basic research on AKM(Apogee Kick Motor) for space launch vehicle was carried out. AKM which will be used as 3rd stage solid rocket motor in 3-stage Korean Sounding Rocket(III) has been developing. KM is a solid rocket motor using composite propellant based on HTPB and is composed of composite motor case and submerged nozzle. To develop KM rocket motor satisfing a given set of requirement, firstly the full-scale KM with diameter 520mm was designed, then sub-scale motors reduced about 60% were manufactured and tested. Full-scale ground firing test is accomplished two times.

  • PDF

Design and Development of High Altitude Test Facility for Kick Motor (고공환경모사 시험설비 설계/개발)

  • Ryu, Jung-Hun;Lee, Jun-Ho;Suh, Hyuk;Jang, Ki-Won;Kim, Yong-Wook;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.403-404
    • /
    • 2008
  • The 2nd stage Kick Motor under the national aerospace middle and long term plan operates over the height of 300Km. Rocket Motors, designed for operation in high altitude, need nozzles with large expansion ratio to improve thrust efficiency. Hence, to evaluate the performance of such rocket motors on the ground, similar low pressure with the operating condition has to be made for the ground test to prevent flow separation in the nozzle. This study is for the installation of the high altitude test facility and test result for Kick Motor.

  • PDF

Stroke Verification Test and Operational Characteristics Analysis of KSLV-I Kick Motor TVC Nozzle (나로호 킥모터 TVC 노즐 행정확인시험 및 특성 분석)

  • Sun, Byung-Chan;Park, Yong-Kyu;Oh, Choong-Suk;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.158-168
    • /
    • 2012
  • This paper deals with TVC nozzle stroke verification test and corresponding analysis techniques related to kick motor TVC system of KSLV-I second stage. It is shown that the relationship between TVC stroke and potentiometer voltage is revealed via the open-loop stroke verification test, and other major operational parameters including nozzle alignment error, actuation error, neutral position, radius of nozzle rotation, location of nozzle rotation center, angle conversion coefficients, etc. are analyzed via the closed-loop stroke verification test. The TVC stroke verification test results for the first and second flight model of KSLV-I show that all TVC operational parameters of KSLV-I second stage were normally setup for the first and second flight tests.

The Rubber Performance Evaluation for Kick Motor Flexible Seal (킥모터 플렉시블 씰 개발을 위한 고무의 성능 평가)

  • Kim, Byung-Hun;Kwon, Tae-Hoon;Cho, In-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.90-95
    • /
    • 2011
  • A Kick Motor, KSLV-I second stage propulsion system, utilizes a flexible seal for pitch and yaw axis controls during combustion. A flexible seal consists of the alternate laminate of rubber and composite reinforcement between forward and aft rings. A Kick Motor nozzle is rotated by the shear deformation of rubber layers. Consequently, the development of rubber, which is appropriate to the usage condition of flexible seal, is very important. A tensile test, QLS test (shear modulus and failure shear stress), and aging test have been carried out to confirm the performance of rubber developed. Test results show that the shear modulus of rubber are 0.4310 ~ 0.4997MPa and the failure shear stress is more than 2.5MPa.