• Title/Summary/Keyword: Khalimsky n-space

Search Result 5, Processing Time 0.016 seconds

CONTINUITIES AND HOMEOMORPHISMS IN COMPUTER TOPOLOGY AND THEIR APPLICATIONS

  • Han, Sang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.923-952
    • /
    • 2008
  • In this paper several continuities and homeomorphisms in computer topology are studied and their applications are investigated in relation to the classification of subs paces of Khalimsky n-dimensional space $({\mathbb{Z}}^n,\;T^n)$. Precisely, the notions of K-$(k_0,\;k_1)$-,$(k_0,\;k_1)$-,KD-$(k_0,\;k_1)$-continuities, and Khalimsky continuity as well as those of K-$(k_0,\;k_1)$-, $(k_0,\;k_1)$-, KD-$(k_0,\;k_1)$-homeomorphisms, and Khalimsky homeomorphism are studied and further, their applications are investigated.

VARIOUS CONTINUITIES OF A MAP f ; (X, k, TnX) → (Y, 2, TY) IN COMPUTER TOPOLOGY

  • HAN, SANG-EON
    • Honam Mathematical Journal
    • /
    • v.28 no.4
    • /
    • pp.591-603
    • /
    • 2006
  • For a set $X{\subset}{\mathbb{Z}}^n$ let $(X,\;T^n_X)$ be the subspace of the Khalimsky n-dimensional space $({\mathbb{Z}}^n,\;T^n)$, $n{\in}N$. Considering a k-adjacency of $(X,\;T^n_X)$, we use the notation $(X,\;k,\;T^n_X)$. In this paper for a map $$f:(X,\;k,\;T^n_X){\rightarrow}(Y,\;2\;T_Y)$$, we find the condition that weak (k, 2)-continuity of the map f implies strong (k, 2)-continuity of f.

  • PDF

EXTENSION PROBLEM OF SEVERAL CONTINUITIES IN COMPUTER TOPOLOGY

  • Han, Sang-Eon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.915-932
    • /
    • 2010
  • The goal of this paper is to study extension problems of several continuities in computer topology. To be specific, for a set $X\;{\subset}\;Z^n$ take a subspace (X, $T_n^X$) induced from the Khalimsky nD space ($Z^n$, $T^n$). Considering (X, $T_n^X$) with one of the k-adjacency relations of $Z^n$, we call it a computer topological space (or a space if not confused) denoted by $X_{n,k}$. In addition, we introduce several kinds of k-retracts of $X_{n,k}$, investigate their properties related to several continuities and homeomorphisms in computer topology and study extension problems of these continuities in relation with these k-retracts.

KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS

  • Han, Sang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1031-1054
    • /
    • 2010
  • Let $\mathbb{Z}^n$ be the Cartesian product of the set of integers $\mathbb{Z}$ and let ($\mathbb{Z}$, T) and ($\mathbb{Z}^n$, $T^n$) be the Khalimsky line topology on $\mathbb{Z}$ and the Khalimsky product topology on $\mathbb{Z}^n$, respectively. Then for a set $X\;{\subset}\;\mathbb{Z}^n$, consider the subspace (X, $T^n_X$) induced from ($\mathbb{Z}^n$, $T^n$). Considering a k-adjacency on (X, $T^n_X$), we call it a (computer topological) space with k-adjacency and use the notation (X, k, $T^n_X$) := $X_{n,k}$. In this paper we introduce the notions of KD-($k_0$, $k_1$)-homotopy equivalence and KD-k-deformation retract and investigate a classification of (computer topological) spaces $X_{n,k}$ in terms of a KD-($k_0$, $k_1$)-homotopy equivalence.

STUDY ON TOPOLOGICAL SPACES WITH THE SEMI-T½ SEPARATION AXIOM

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.707-716
    • /
    • 2013
  • The present paper consists of two parts. Since the recent paper [4] proved that an Alexandroff $T_0$-space is a semi-$T_{\frac{1}{2}}$-space, the first part studies semi-open and semi-closed structures of the Khalimsky nD space. The second one focuses on the study of a relation between the LS-property of ($SC^{n_1,l_1}_{k_1}{\times}SC^{n_2,l_2}_{k_2}$, k) relative to the simple closed $k_i$-curves $SC^{n_i,l_i}_{k_i}$, $i{\in}\{1,2\}$ and its normal k-adjacency. In addition, the present paper points out that the main theorems of Boxer and Karaca's paper [3] such as Theorems 4.4 and 4.7 of [3] cannot be new assertions. Indeed, instead they should be attributed to Theorems 4.3 and 4.5, and Example 4.6 of [10].