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CONTINUITIES AND HOMEOMORPHISMS IN COMPUTER
TOPOLOGY AND THEIR APPLICATIONS

SAaNG-Eoxy HaN

ABsTRACT. In this paper several continuities and homeomorphisms in
computer topology are studied and their applications are investigated
in relation to the classification of subspaces of Khalimsky n-dimensional
space (Z™,T™). Precisely, the notions of K-(ko, k1)-,(ko, k1)-,KD-{ko, k1 )-
continuities, and Khalimsky continuity as well as those of K-(kg,%1)-,
(ko, k1)-, KD-(ko, k1)-homeomorphisms, and Khalimsky homeomorphism
are studied and further, their applications are investigated.

1. Introduction

Let N, Z, and R be the sets of natural numbers, integers, and real numbers,
respectively. Furthermore, by Z™ and R™ we denote the Cartesian product
of n-tuples of Z and the n-dimensional real space, respectively. Even though
several topologies for the study of a set X C Z™ have been studied in [3, 4, 5,
6, 11, 17, 20], in this paper two kinds of topological structures are used. One
is the discrete (or digital) topology on Z™ [7, 8, 9, 10], denoted by (Z™, D™),
and the other is the Khalimsky product topology on Z™, denoted by (Z™,T™)
which is the product space of the Khalimsky line topology (Z,T') in [1] (see also
[3, 6, 17, 19, 20, 22]). Consider two discrete topological spaces X C Z™ with
ko-adjacency, denoted by (X, ko), and Y C Z™ with k;-adjacency, denoted by
(Y,k1). Then, a continuous map f : (X, ky) — (Y, k1) need not preserve the ko-
connectivity of X into the ki-connectivity of Y. Meanwhile, in order to study
objects in Z™, the preservation of the kg-connectivity into the k;-connectivity
by the map f is strongly required so that the digital (ko, k1)-continuity of f
was developed in [21] (see also [2, 7, 8, 9, 10, 12, 13, 14, 15, 16]) and has
been used in the study of a digital k-curve, a closed k-surface [9, 10, 12, 14],
digital covering theory [7, 8, 15, 16], and so forth. Indeed, by using both digital
covering theory and the k-homotopic thinning in [13, 16], we can calculate the
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digital fundamental groups of both a closed k-curve and a digital product of
two simple closed k-curves [16].

For a set X C Z", considering the subspace induced from the n-dimensional
Khalimsky space (Z™,T") [1] (see also [3, 19, 22]), we denote by (X,T%) C
(Z™,T™) the subspace. Furthermore, in this paper a topological space (X, T%)
with one of the k-adjacency relations of Z" is called a (computer topological)
space with k-adjacency and is denoted by (X, k,T%). Hereafter, we briefly use
the notation (X, k,T%) := X, [6] (see also [11]). Indeed, by computer topol-
ogy is usually meant the mathematical recognition of a space X C Z", e.g.,
a development of tools implementing topological concepts for use in computer
science and information technology. Computer topology plays a significant role
in computer graphics, image synthesis, image analysis, and so forth. It grew
out of discrete geometry expanded into applications where significant topolog-
ical issues arise and further, it may be of interest both for computer scientist
who try to apply topological knowledge for investigating discrete spaces and
for mathematicians who want to use computers to solve complicated topolog-
ical problems. In this paper we can recognize some difference between com-
puter topology and digital topology. Precisely, while computer topology needs
some reasonable topological structure for the research of a space X C Z™ such
as Khalimsky product topology, Lawson topology, Alexandroff topology, and so
forth [1, 4], digital topology requires the discrete topological structure of a
space X C Z™ with k-adjacency.

Indeed, for two sets A, B C Z, a Khalimsky continuous map f : A1 2 = Bi 2
obviously preserves the 2-connectivity [11]. But, for two kg- and k;-connected
spaces Xng ko and Yy, x,, & Khalimsky continuous map f : Xpg ke — Yaq by
need not preserve the ko-connectivity of X into the ki-connectivity of Y, where
no > 2,m1 > 1 (see the points z5 and zg in Fig.1). Thus, in computer topology
we strongly need several continuities of the map f in relation to the preservation
of the kyp-connectivity into the kg-connectivity.

Up to now in computer topology several kinds of continuities such as K-
(ko, k1)-, (ko,k1)-, KD-(ko, ky)-continuities, and Khalimsky continuity have
been studied [6, 11]. Indeed, each of these has some advantages and disad-
vantages depending on the domain and the codomain of a given map. While
Khalimsky continuity for a map f : (X,T%) — (Z,T) was partially studied in
[11, 19], and a special kind of homeomorphism was studied in [3] the others
have been recently studied from a computer topological point of view. Now we
say that a property which when possessed by a space in Z" is also possessed by
each of K-(kog, k1)-, (ko, k1)-, KD-(kg, k1)-, and Khalimsky homeomorphisms in
(10, 15] is called a computer topological property. Indeed, the research of the
computer topological properties is also a field of interest in computer topology.

Recently, in [6] the comparison between (kg, k1)-continuity (see Definition 4)
and digital (ko, k1)-continuity (see Definition 1) was done. Furthermore, in [11]
the notion of K-(ko, k1)-continuity, which is stronger than the Khalimsky con-
tinuity, was established to study a computer topological space X, . Besides,
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the notion of KD-(k, k1 )-continuity was developed and its applications were
studied for several cases [11].

This paper is organized as follows. In Section 2 we provide some basic no-
tions for computer topology and some properties of the Khalimsky product
topology. In Section 3 we investigate some relations among four types of conti-
nuities in computer topology. In Section 4 four kinds of homeomorphisms such
as K-(ko, k1)-, (ko,k1)-, KD-(ko, k) )-homeomorphisms, and Khalimsky home-
omorphism are investigated and compared with each other. In Section 5 we
conclude the paper with referring to four forgetful functors from each of several
computer topological categories into the digital topological category.

Furthermore, Khalimsky topological subspace (X,T%) in this paper can be
recognized as a set of n-cells which are unit n-cubes centered at the points with
integers coordinates.

2. Preliminaries

A set X C Z” with k-adjacency, denoted by (X, &k}, has usually been con-
sidered in a quadruple (Z™ k, k, X) owing to the digital k-connectivity paradoz
and the digital k-curve theorem in [18], where n € N, k represents an adja-
cency relation for X, and k represents an adjacency relation for Z™ — X [18].
However, in this paper we are not concerned with adjacencies among n-xels of
Z"™ — X. Precisely, we consider a set X C Z™ with k-adjacency and Khalimsky
product topology.

As the generalization of the commonly used 4- and 8-adjacency of Z? and
further, 6-, 18- and 26-adjacency of Z3 in [18], the k-adjacency relations of Z™
have been used in [5] {see also [7, 8, 9, 16]). Precisely, for a positive integer
m with 1 < m < n, we say that two points p = (py,p2,...,pn) and ¢ =
(g1,92,-..,qn) € Z™ are adjacent according to the number m if

e there are at most m indices ¢ such that |p; —¢;| = 1; and
o for all other indices ¢ such that |p; — ¢;| # 1,p: = ¢;-

In the following, this operator consisting of the above two statements is called
(CON%) [5] (see also [6, 7, 8, 9]). Then, by X;(p) we denote the set of the
points g € Z™ which are adjacent to a given point p according to (CONx)
and the number k. := k(m,n) is the cardinal number of X;(p) called the k-
neighbors of p. Indeed, X;(p) is equal to the set N} (p) :=={x € X|p is k-~
adjacent to &} which is the k-neighbors of the point p [18]. In addition, we
recall Ni(p) = N;(p)U{p} [18]. Indeed, the number m in (CONx) determines
one of the k-adjacency relations of Z™ [5] (see also [6, 7, 8]). Consequently, the
following k-adjacency relations of Z™ are recently established in [5] (see also
[6, 7, 8]).

r—2
(2.1) k€ {2n(n>1),3"—1(n >2),3"=) " Cr2"*~1(2<r <n-1,n > 3)},

t=0

n!

where Ctn = m
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For example, (n,m,k) € {(2,1,4), (2,2,8); (3,1,6), (3,2,18), (3,3,26);
(4,1,8), (4,2,32), (4,3,64), (4,4,80); (5,1,10), (5,2,50), (5,3,130), (5,4, 210),
(5,5,242); (6,1,12), (6,2,72), (6,3,232), (6,4,472), (6,5,664), (6,6,728)}.

Indeed, the k-adjacency relations of (2.1) can be rewritten in a simpler and
more generic form as follows.

Proposition 2.1 ([16]). k(m,n) = Z"—l 21O, where CP = (n_—'z'),T

i=n—m i

In order to justify Khalimsky line topology, let us consider the partition
Unez{[2n — §,2n + ],(2n + 1,2n + £)} of R which leads to an equivalence
relation ‘ ~’ on R. Precisely, we obtain the set of equivalence classes {[z] : z €
R} from the equivalence relation set (R,~), where z ~ y if and only if z and
y are in the same set [2n — 3,2n + 1] or (2n + §,2n + 2). Then we have the
equivalence class of « € R as follows. R/ ~:= Z. Furthermore, we consider the
following quotient map

p: (R, U) - Z for which p(z)=[z]€Z,z€R

Then the quotient topology on Z is called the Khalimsky line topology on Z.

Indeed, Khalimsky line topology on Z is induced from the subbase {[2n —
1,2n + 1)z : n € Z} [1] (see also [3, 6, 11, 17, 22]). Namely, the family of
the subset {{2n + 1},[2m — 1,2m + 1]z : m,n € Z}, which induces open sets
for (Z,T), is a basis of the Khalimsky line topology on Z. Furthermore, the
product topology on Z™,n > 2, is derived from (Z,T). Then the typical product
topology on Z" induced from (Z,T) is called the Khalimsky product topology
on Z", denoted by (Z",T™).

If the set [a,b]z = {a < n < b:n € Z} with 2-adjacency is considered with
discrete topology, then it is called a digital interval [21] and further, if the set
[a, b]z is considered as a subspace of (Z,T) with Khalimsky line topology, then
it is called a Khalimsky interval.

Let us examine the structure of (Z™,T"),n € N. A point z = (71, Z2, ...,
Zn) € Z™is open if all coordinates are odd, and closed if each of the coordinates
is even [17, 19]. These points are called pure and the other points in Z™ is called
mized [17, 19, 22]. For all subspaces of (Z",T™),n > 2, in Fig.1, 2, 3, 4, 5, 6,
7, 8, 9, and 10 the symbols such as B, e, and a jumbo dot mean a pure closed
point, a mixed point, and a pure open point, respectively.

For a set (X, k) in Z™, a pair of two points z,y € X are called k-connected if
there is a sequence (2o, 1, . .., %m) C X such that zo = z, z,,, = y and further,
x; and z;4; are k-adjacent, ¢ € [0,m — 1}z, m > 1 [18]. The number m is called
the length of this k-path [18]. For an adjacency relation k, a simple k-path in
X is a sequence (T;);c[o,m], C X such that z; and z; are k-adjacent if and only
ifeither j = i+ 1ori = j+1][18].

For a set (X, k) in Z™, let us recall a (digital) k-neighborhood of a point
zg € X as follows. The k-neighborhood of zo € X with radius €, £ € N, is
defined to be the following subset of X [5] (see also [6, 7, 8, 9, 12, 13, 14])

(2.2) Ni(zo,€) :={z € X| li(zxo,2z) <e}U{z0},
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where [ (zo, ) is the length of a shortest simple k-path from zo to z in X.

Hereafter, for a set X C Z", considering a subspace (X, T%) C (Z",T") with
one of the k-adjacency relations in Proposition 2.1, we remind the notation
(X, k, T}}) = Xn’;;.

For a space X, ¢ and x € X, by the neighborhood V of the point x is typically
meant the existence of some open set O, € T% such that z € O, C V.

Furthermore, if the set Ni(zo,2) in (2.2) is a topological neighborhood of g
in (X,T%), then this set is called a (computer topological) k-neighborhood of
with redius € € N and is denoted by

(2.3) Ni(zo,€)-

For example, consider a space X3, where X = {z;[i € [0,7]z} in Fig.1.
Then we see that Nj(zo,1) = {z:]i € [0,4]z}, Ni(20,2) = {zi}i € [0,5]z},
Ng(zo,3) = X — {z7}, and Ng(xo,4) = X.

Let us now consider the set X with X, 4 instead of X5 3. Then we cannot
have N} (zo,¢), € € N, because every open set O, € T% containing the point z,
cannot have an open set O,, containing the point zg such that O,, C Ny(zo,¢),
e € N. But Nf(z1,1) = {zo,z1,22} and Nf(z1,2) = {x0,21,%2,%a,T5}.

Therefore, we see that the current k-neighborhood in (2.3) is different from
the (digital) k-neighborhood in (2.2) owing to the computer topological struc-
ture of X, . Furthermore, the digital k-neighborhood in (2.2) and the k-
neighborhood in (2.3) are useful to define the digital (kg, k1 )-continuity in Def-
inition 1 and three kinds of computer topological continuities (see Definitions
3, 4, and 5).

3. Four types of continuities in computer topology and
their comparisons

In order to study a digital k-curve, a digital k-fundamental group, a closed k-
surface, a digital connected sum, Euler characteristic of an object in Z", relative
digital homotopy, digital covering theory in [7, 8, 9, 10, 12, 13, 14, 15, 16], and
so forth, we have used the following digital (kg, k1 )-continuity in a fashion which
is a generalization of digital continuities of {2, 21].

Definition 1 ({5, Digital (ko, k1 )-continuity}}. (see also [6, 7, 8, 9, 12, 13, 14}])
For two discrete topological spaces with k;-adjacency, ¢ € {0,1}, (X, ko) in
7™ and (Y, k) in Z™, a function f : (X ko) — (Y, k1) is said to be digitally
(ko, k1 )-continuous at a point ¢ € X if for any Ny, {f(z),e) C Y, there is
Ny (2,8) C X such that f(Ng,(x,8)) C Ni, (f(z),¢).

Furthermore, we say that a map f : (X, ko) — (Y, k) is digitally (ko, k1)-
continuous if the map f is digitally (ko, k1)-continuous at every point z € X.

Indeed, the digital {ko, k1)-continuity from (X, ko) to (Y, k;) implies the
preservation of the kg-connectivity of (X, ko) into the k;-connectivity of (Y, k).
Furthermore, it turns out that digital (kg, ki )-continuity has the uniform (kq,
k1 )-continuity in [15].
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Remark 3.1 ([15]). The digital (ko, k1)-continuity in Definition 1 is equivalent
to the following: f(Ni,{®,1)) C Ni, (f(z),1), which means that if z; and z,
are ko-connected, then the images f(z1) and f(xs) are ki-connected or equal
to each other [2].

Let us now recall four kinds of continuities in computer topology as follows.

Definition 2 ([1, Khalimsky continuity]). (see also [3, 19, 22]) For two spaces
(X,T%°) and (Y, T9"), afunction f : X — Y is said to be Khalimsky continuous
at a point € X if f is continuous at the point z with the Khalimsky product
topology. Furthermore, we say that amap f : X — Y is Khalimsky continuous
if it is Khalimsky continuous at every point z € X.

The current Khalimsky continuity need not preserve the preservation of the
kg-connectivity of X, & into the ki-connectivity of ¥, x, which is one of the
essential requirements in digital and computer topology (see the map in Fig.1
or Example 3.2). Precisely, consider the map f : X535 — Y5 in Fig.1, where
Y =[1,4]z. Then, while the map f is a Khalimsky continuous map, it cannot
be digitally (8,2)-continuous at the points z5 and zg. Let us consider the
following example showing the importance of the notions of several continuities
in computer topology such as (kq, k1)-continuity, KD-(kq, k1 )-continuity, and
K-(kg, k1 )-continuity.

Example 3.2. Consider two spaces (Z,2,T), (Z? 4,T?), and the diagonal map
f 7% - 72 given by f(z) = (x,z). Then,

(1) while the map is obviously Khalimsky continuous, it cannot preserve
the 2-connectivity into the 4-connectivity.

(2) If we consider the map f with codomain (Z?8,T?) instead of (Z? 4,
T?), then f obviously transforms the 2-connectivity into the 8-connecti-
vity. Namely, f(N2z(z,1)) C Ng(f(z),1).

(3) fF(N3(z,1)) C Ny (f(z),1).

(4) For any ¢ € N, there is no N (f(0),¢) in f(Z) C Z* so that f(N3(0,1))
¢ N;(f(0),e) because there is no digital 4-neighborhood of f(0) con-
taining the smallest open set including the point f(0) in f(Z)24.

Motivated by Example 3.2, the following three continuities have been devel-
oped in computer topology. In terms of Definitions 1, 2 and Remark 3.1 we
have established the following.

Definition 3 ([11, Khalimsky digital (ko, k;)-continuity]). For two spaces
X ko and Yy, g, a function f : X — Y is said to be KD-(kg, k1 )-continuous
at a point z € X if

(1) f is (Khalimsky) continuous at the point z; and

(2) f is digitally (ko, k1)-continuous at the point z € X.

Furthermore, we say that a map f : X — Y is KD-(ko, k1 )-continuous if the
map [ is KD-{ko, k1 }-continuous at every point = € X.
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For example, the diagonal map f in Example 3.2 is KD-(2, 8)-continuous.

Meanwhile, none of the conditions (1) and (2) of Definition 3 implies the
other [11]. More precisely, consider the spaces Xo 3, Y12, and the map f :
Xss — Y12 in Fig.l, where X = {z;}i € [0,7]z} and ¥ = [1,4]z. Then,
while the map f is Khalimsky continuous, it cannot be KD-(8, 2}-continuous at
the points z5 and zg in Fig.1. Furthermore, even though the condition (2) of
Definition 3 is not related to the Khalimsky topology, the preservation of the
ko-connectivity of X, x, into the kj-connectivity of Y, &, should be required
for the study of a map f: Xpg ko = Yoo,k -

5 X?. Xé‘ A
4 . x5' 4e
e 8 3e
2 e 2e
L e te
0 1 2 3 .

x —> Y

Figure 1

Now, by the use of the computer topological k-neighborhood in (2.3), the
following continuity in a fashion was established in [11].

Definition 4 ([6, 11, (ko, k1 )-continuity]). For two spaces Xy, x, and Yy, &,,
a function f: X — Y is said to be (ko, k1 )-continuous at a point z € X if for
any Ny (f(z),e) C Y, there is Nf (z,8) C X such that

f(Ngy(,8)) C Ni, (f(2),€),
where for some £ € N, N (f(z),¢) is assumed to be existed. Furthermore,
we say that a map f : X — Y is (ko, k1)-continuous if the map f is (ko, k1)-
continuous at every point z € X.

In Definition 4, if such the neighborhood Ny (f(z),€) does not exist, then we
obviously say that f cannot be (ko, k1 )-continuous at the point z.

As a generalization of (k,2)-continuity in [11] {see Remark 3.2 in [11]), we
obtain the following.

Remark 3.3. The (ky, k1 )-continuity of Definition 4 is equivalent to the follow-
ing:

FNE, (z,7)) C NE(f(2), 5),
where the number r is the least element of N such that N} (z,7) contains an
open set including the point x (so N[ (z,r) = Ny, (z,r)) and s is the least
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element of N such that Ny (f(z),s) contains an open set including the point
f(z) (so Ni, (f(2),8) = N, (f(2), 9))-

In Example 3.2, we observe that the map f is not (2, 4)- but (2, 8)-continuous.
The current (ko, k; )-continuity is useful to develop essential tools in computer
topology such as (ko, k1 )-homotopy, {ko, k;)-homotopy equivalence, {(ko, k1 )-
covering theory, and so forth.

Using Definitions 2 and 4, and Remark 3.3, we obtain the following.

Definition 5 ([11, Khalimsky (ko, k; )-continuity]). For two spaces X, x, and
Yo, ki, & function f : X — Y is said to be K-{ko, k; )-continuous at a point
ze Xif

(1) f is (Khalimsky) continuous at the point z; and

(2) f is (ko, k1)-continuous at the point z.

Furthermore, we say that a map f: X — Y is K-(kg, k1 )-continuous if f is
K-(ko, k1)-continuous at every point z € X.

We see that none of the conditions (1) and (2) of Definition 5 implies the
other [11]. More precisely, see the map f in Fig.1 and the points z5 and zs
in X. Then, while the map f is Khalimsky continuous, it cannot be an (8, 2)-
continuous map at the points x5 and zg.

Foramap f: Xpg ks = Yn, ke, the notions of Khalimsky continuity, {(ko, &1 )-
continuity, KD-(kg, k1 )-continuity, and K-(ko, k1 }-continuity are different from
each other and further, their usages depend on the spaces X, », and Yy, #,:
Remark 3.4. Consider a map f: X7 9 = Y, 5. Then we obtain the following.

(1) K-(2, k)-continuity of f implies KD-(2, k}-continuity of f, but the con-
verse does not hold.
(2) None of (2, k)-continuity of f and KD-(2, k)-continuity of f implies the
other.
For example, consider the map f: Ay 4 — Y15 given by f(a;) =1 and f(a2) =
2, where A = {a; = (0,1),a2 = (1,1)} and ¥ = {1,2} C Z. Then, while the
map f is (4, 2)-continuous, it cannot be Khalimsky continuous at the point a,
because {1} € Ty and {a1} ¢ T3.

Hereafter, we investigate some relations among Khalimsky continuity, KD-
(ko, k1)-, (ko,k1)-, and K-(kg, k1)-continuities of a map f : Xpgke = Yo kes
1 < n; <3,i € {0,1} (see Theorem 3.5 and Corollary 3.6). In [11], for a
map f : Xpix — Y12, various properties of the map f were studied. As a
generalization of this property we obtain the following.

Theorem 3.5. Let f: Xk = Y, 1, be amap, 1 <n; <3,i € {0,1}. Then
K-(ko, k1)-continuity of f implies KD-(ko, k1)-continuity of f.

Proof. First, in case f: X; o — Y1 o, it is obvious that K-(2, 2)-continuity of f
is equivalent to KD-(2,2)-continuity of f (see Corollary 3.5 in [11]) because for
any points z € X and y € Y, we obtain

No(z,1) = NJ(z,1) and Na(y,1) = Nj(y,1).
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Second, in case f: Xpr — Y12, 2 < n < 3, for any point y € ¥, we obtain
Na(y,1) = Nj(y,1). Therefore, K-(k, 2)-continuity of f obviously implies KD-
(k, 2)-continuity of f because the existence of N} (z,r) in Remark 3.3 implies
Ni(z,1) C Ni(z,r).

Third, in case f : X12 = Yo, 2 < n < 3, the assertion that K-(ko, k1)-
continuity of f implies KD-{ko, k1 )-continuity of f is also successful because
for any point z € X, N3(z,1) = Na(z,1) and further, for any point y € Y the
existence of N (y, s) in Remark 3.3 implies N (y, 1) C Nj (y, s) in Remark 3.3.
Let us consider the following case. In Fig.2, consider amap f: X1 2 — Yo 4 for
which f(0) = yo = (0,0) € Y and f(1) = ys. Then, in Y5 4 and X; 2, we obtain
the smallest 4- and 2-neighborhoods of f(0) and 0 such as N;(f(0),6) =Y and
N3(0,1) = X, respectively. While f(N5(0,1)) C N;(f(0),6) and further, f is
Khalimsky continuous at the point 0 € X, we obtain f(N2(0,1)) € N4(£(0),1),
which means that K-(kg, k1 )-continuity of f at the point 0 € X cannot imply
KD-(2,4)-continuity of f at the point 0 € X. Meanwhile, this map f cannot
be K-(2,4)-continuous at the point 1 € X either. Thus this map f cannot be
a suitable counterexample of the assertion of Theorem 3.5.

©2
. - .
Y A Y;
. ) .
. Y- ‘}’6 Y2.
1 @
‘ys ) - 'yg . Y%
-2, O .0
0
Y..
Pk o Yo
f
X Y
FIGURE 2

Fourth, let us now prove Theorem 3.5 for the case 2 < n; < 3,7 € {0,1}.
Precisely, we now prove that K-(kg, k;)-continuity of f implies KD-(ko, k1 )-
continuity of f at each point ;7 € X. If not, for some point z; € X, we can
find some K-(ko, k1 )-continuous map f : Xng,ke = Y,k such that f(zo) ¢
Ni, (f(z1),1), where 29 € Ny (zy,1). Thus, motivated by Remarks 3.3 and
3.4, considering a pair of distinct points z1,22 € X such that z, and zy are
ko-adjacent, we investigate the following nine cases according to the locations
of both z; € X and f(x;) € Y (see Fig.3).

(Case 1) Assume that the two points 2z, € X and f(z1) € ¥ are pure open
points. Since both {z;} and {f(x;)} are the smallest open sets containing
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i ) - L"' ) %, for, )

(Case 1) (Case 2) (Case 3)
ix’ }f(xn ) a £x) ) % #{xl )
(Case d) (Case 5) (Case 6)
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the points z; and f(z:), respectively, we see that Ny, (z1,1) = Nj (21,1) and
Ni, (f(21),1) = Ni (f(z1),1). By the K-(ko, k1)-continuity of f at the point
z1, we obtain

f(ng(l'l, 1)) = f(NI:o(xla 1)) c NI; (f(w1>’ 1) = Nk1 (f(xl)a 1)3
which means that f is a KD-{kg, k; )-continuous map at the point z; by Remark
3.1.

{Case 2) Assume that ;) is a pure closed point and f{x,) is a pure open point,
Then, owing to the K-(kp, k1 )-continuity of f at the point x4, there is a smallest
open set containing the point 21 is Njng_;(21,1) = Ngno_1(21,1) if kg = 3701
and O, such that O,, C N, ,:‘.‘0 {(z1,7) for some r € N in Remark 3.3 according to
the ko-adjacency of Xyq.k, and further, Ni (f(z1),1) = Nk, (f(21),1) because
{f(z1)} € Ty*. Due to the K-(ko, k; )-continuity of f at the point z;, and

f(Oz) ={f(x1)} and [f(Ng,(z1,7)) = Ng, (f(21),1).
Thus, f{z;) and f(ze) are equal to each other or ki-adjacent, where x, €
Nio(z1,1). Therefore,
F(Nio(21,1)) C F(Ngy(1,7)) C NE (£(21),1) = Ny (f(21),1)

for any ko-adjacency of Xy, x,, which implies that f is KD-{kq, k1)-continuous
at the point zy.

(Case 3) Assume that z; is a mized point and f(z;) is a pure open point.
Then, due to the K-(ko, k1)-continuity of f, via Remark 3.3, there is N} (z1,7)
such that

f(Nio (21,1)) C (N, (21,7)) C N (f(21),1) = N, (f(21), 1)
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because {f(z;)} € Ty, where the number 7 is assumed in Remark 3.3. Thus
the map f is KD-(ko, k1 )-continuous at the point z; by Remark 3.1.

(Case 4) Assume that z; is a pure open point and f(x1) is a pure closed point.
By the hypothesis of K-(ko, k1 )-continuity of f at the point z; and Remark 3.3,
take N¢ (f(21),s) C Y, where s is assumed in Remark 3.3. Then, since the
singleton {1} is an open set, there is Ny (z1,1) = Ni,(21,1) C X such that

3.1) F(NE, (21,1)) C N, (f(21), 9)-

Meanwhile, the formula in (3.1) need not imply KD-(ko, k;)-continuity of f
at the point z;. In other word, the number s in (3.1) need not be equal to
1 € N. Thus, by the use of (3.1) and Remarks 3.1 and 3.3 we now strongly
need to examine that K-(kg, k1 )-continuity of f implies KD-(ko, k1 )-continuity
of f at the point x; for any ko-adjacency of X, , and ki-adjacency of Yy, &,.
Namely, it suffices to prove that the K-(ko, k1 )-continuous map f at any point
z1 € X is digitally (ko, k1)-continuous at the point z;.

(Case 4-1) If k; = 3™ ~1and 2 < ny < 3in (3.1), due to the K-(kg, 3™ —1)-
continuity of f, then we obtain

F(Niy(21,1)) C Ngma 1 (f(21),1)

because Nin, _(f(21),1) = Nani_1(f(1),1) and Nj (z1,1) = Ny (z1,1) s0
that we may take s = 1 in (3.1), which means that the map f is KD-(ko, k1)-
continuous at the point zy for any ko-adjacency of X.

(Case 4-2) If k; # 3™ — 1 and 2 < n; < 3in (3.1), consider a point x5 ko-
adjacent to x1, i.e., T2 € Ny, (21,1} and 21 # z2. Even though the point z; is
a mixed point or a pure closed point depending on the kg-adjacency of X, &,
f(z2) should be a pure closed point in N3», _1(f(z1)), i-e., f(x2) can be neither
a pure open point nor a mixed point in Nz»i_1(f(21)). If not, first suppose
that f(z2) ¢ Ns=i—1(f(z1)), then the map f cannot be a K-(ko, k1)-continuous
map at the point zs. Second, suppose that f(z2) is a pure open point in
Ngni—1(f(21)). Then we have a contradiction to the K-(kq, k1)-continuity of
f at the point z3. Precisely, by the K-(ko, k1 )-continuity of f at the points
z; and zao, fTH({f(z2)}) contains the set {z1,z2} because {f(z2)} € Ty'
and a smallest open set in T%° containing the point z2 € Ni,(z1,1) with
x1 # To should include the pure open point z; (see Fig.4). Thus we obtain
f(z1) € {f(z2)}, which leads to a contradiction to the hypothesis that f(x1) ¢
{f(z2)}. Third, suppose that f(z2) is a mixed point in N3ni_1(f(z1)). Then
there is always a smallest open set Oy(,,) € Ty' such that f(22) € Oy (s, and
f(z1) ¢ Oj(ay) by the topological property of Yy, k, because f(z1) is a pure
closed point in Y (see Fig.4). By the K-(kq, k1)-continuity of f at the points
z1 and @2, f71(Of(s,)) should contain the set {21, 22} because 3 € Ny, (z1,1)
with z; # x2, and the fact that any smallest open set containing the point z»
should include the point z;, which contradicts f(z1) ¢ Of(s,)-
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Thus f(z2) should be a pure closed point in Ng»:i_1(f(z1)). Precisely,
f(z2) = f(=1) € Ny, (f(z1),1), which means that the map f is KD-(ko, k1)-
continuous at the point z;.

Now, if we intensively investigate several examples in Z? and Z* testifying
Case 4-2, then it is helpful to apply Case 4-2 in discrete geometry and its
applications in relation to coding theory, computer science, informatics and
further, prove Cases 5-2, 6-2, 7-2, 8-2, and 9-2 below.

Precisely, let us examine the cases Xnyk, and Yy, x, in Case 4-2, where
(no, ko) € {(2,4),(2,8)} and (n1, k1) € {(2,4),(3,6),(3,18)} (see Fig.4). Simi-
larly, we can examine the following cases (ng, ko) € {(3,6), (3,18), (3,26)} and
(nla kl) € {(25 4)7 (3: 6)a (37 18)}

Y. Y
.2 . 3 };2 Y3
- [ ]
£ (x) £
L . .
2 X,
o I o
x By Z, Z X 2 2
. . Y ) 2 Z
X X . ®
» - - .
gi(x) z g2,(%) z
h W w, h,
1 ‘e 4. 2 WJ. W4.
W,
.
. W "o
n .
hi(x ) b, (%) w
(@) (b)
FIGURE 4

(Case 4-2-1) Let us investigate the case (n1, k1) = (2,4) and (ng, ko) = (2,4)
with K-(4,4)-continuity. To be specific, assume a K-(4, 4)-continuous map f :
X4 — Y54 in Fig.4(a), where X = {z,z2} in which z; and z, are 4-adjacent
and Y = {y; := f1(z1),y2,ys} is 4-connected. Let us now examine f;(z3) with
K-(4,4)-continuity of f; at the points z1 and z2. By the K-(4,4)-continuity of
f1 at the pure open point z; and a mixed point zs, we obtain
(3.2) fi(Na(z1,1)) = fi(N{ (21,1)) C Ni(fi(z1),8);

' fi(Ng(z1,1)) C Ns(fi(z1))

because fi(z1) is a pure closed point and {z1} € T%, where the number s is
assumed in Remark 3.3. Then, since the point z3 € Ny(z1,1) with z; # x5 is a
mixed point (see Fig.4(a)), fi(x2) should be a pure closed point in Ng(f1(z1))-
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If not, first suppose fi(z2) ¢ Ns(fi1(z1)), then the map f cannot be a K-(4,4)-
continuous map at the point zs because the smallest open set containing the
point x5 is the set X and for a smallest open set containing the point fi(x2),
denoted by Oy, (z,) € T, we obtain X C f{'(Oy,(sy)), which contradicts
to the Khalimsky continuity of f; at the points z; and x2. Second, suppose
that fi(z2) is a pure open point in Ng(fi(z1)) such as fi(zz) = y3 € Y in
Fig.4(a). Then we also have a contradiction to the K-(4,4)-continuity of f;
at the point zs. Precisely, by the K-(4,4)-continuity of f; at the points z;
and 72, we obtained f;'({y3}) = {#1,22}. To be specific, {y3} is an open set
and for 5 € NJ(z1,1) = Na(z1,1), any smallest open set containing the point
z9 should include the point z; from the topological property of X34 because
the point z; is a pure open point in X (see Fig.4(a)), which contradicts that
fi(z1) = y1 ¢ {ys}. Third, suppose that f(z2) is a mixed point such as
fi(z2) = y2 € Y in Fig.4(a). Then we also have a contradiction to the K-(4, 4)-
continuity of f; at the point zy. Precisely, by the K-(4, 4)-continuity of f; at the
points z; and z2, f; ' ({y2,¥3}) = {1, 22} because {y,ys} is the smallest open
set containing the point yo and further, {z;,z2} is also the smallest open set
containing the point zs, which contradicts that fi(z1) = y1 ¢ {y2,¥3}. Thus
fi(z2) should be a pure closed point satisfying (3.2). Therefore the map f; is
KD-(4, 4)-continuous at the point z; because fi(z2) = fi(z1) € Na(fi(21),1).
(Case 4-2-2) Let us investigate the following case (n1, k1) = (3, 18), (ng, ko) =
(2,4) with K-(4, 18)-continuity (see Fig.4(a)). For instance, consider the spaces
Xa,4, Z318, and the map g1 : Xo4 — Z31s in Fig.4(a), where Z = {2 :=
91(21), 22,23} is 18-connected. Let us now examine g;(z2). Then, the point
g1(x2) should be a pure closed point in Nog(g1(zy)) satisfying (3.3) below.

(3.3) {91(N4(1'1, 1) = a1 (Ni(z1,1)) C Nfs(gl(zl),s)); }

g1(N;(z1,1)) C Nag(91(z1)

because the smallest open set containing the point g; (1) is the set Z, where the
number s is assumed in Remark 3.3. If not, first suppose g1(x2) ¢ Nag(g1(z1)),
then the map f cannot be a K-(4, 18)-continuous map at the point z2. Second,
suppose that the point gi(z2) = z3 which is a pure open point. Then we must
take g7 '({23}) = {z1, 72} owing to the K-(4, 18)-continuity of g at the point
T2, because {23} = {g1(z2)} € T3, which contradicts that gi(z1) = 2 ¢ {23}.
Thus g; (z2) cannot be a pure open point. Third, suppose that g1(z2) = 22 is a
mixed point. Then, since the smallest open set contains the point zs is the set
{z1,22}, we also have a contradiction to the K-(4, 18)-continuity of g; at the
point z, by the same method as the above because gy '({22,23}) = {z1,z2}
and {23,23} is also the smallest open set containing the point z2. Thus g; (z2)
cannot be a mixed point in Nog(g:(21)). Therefore, ¢1(z1) = g1(x2) by (3.3),
which means that the map g¢; is KD-(4, 18)-continuous at the point z; because
g1(w2) € Nig(g1(x1),1).
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(Case 4-2-3) Let us consider (ni,k1) = (3,6), (no, ko) = (2,4) with K-
(4, 6)-continuity. For instance, consider the spaces Xs 4, W3, and the map
hi : Xo4 — Wi in Fig.4(a), where W = {w; := hi(z1), wa, w3, ws} is 6-
connected. Let us now examine hy(z2). Then, the point hi(z2) should be a
pure closed point in Nag(hy(z1)). If not, first suppose hi(xs) ¢ Nag(hi(z1)).
Then the map h, cannot be a K-(4, 6)-continuous map at the point zs. Second,
suppose that h;{(z2) = ws which is a pure open point. Then we must take
R ({wq}) = {@1,22} owing to the K-(4,6)-continuity of 1 at the point z,
because the smallest open set containing the point z is exactly the set {z1,22}
and {ws} € T3, which contradicts that hy(z1) = w; ¢ {ws}. Third, suppose
hi(z2) € {wa, w3} which is a mixed point in Nag(hi(z1)). Then, due to the
K-(4, 6)-continuity of h; at the point z», we must take A ({wz, w3, ws}) =
{z1,z2} because the smallest open set containing the point ws or w3 is exactly
the set {ws,ws, w4}, which contradicts that hy(z1) = wy ¢ {w2,ws, ws}. Thus
hi(z2) should be the pure closed point satisfying (3.4) below.

(3.4) hi(Na(21,1)) = ha (N (21,1)) C Nig(ha(21),8);
. h1 (N} (21,1)) C Nog(f1(z1))

because the smallest open set containing the point hy(x;) is the set W, where
the number s is assumed in Remark 3.3.

Thus hi(xz1) = hi(z2) in (3.4), which makes the map h; be KD-(4,6)-
continuous at the point z; because hi(z;) € Ng(hi(z1),1).

Furthermore, let us examine further the case (ng, ko) = (2,8) instead of
(2,4) and (n1, k1) € {(2,4),(3,6),(3,18)}. Precisely, consider the spaces X g,
}/2’4, Z3’18, and W376 in Flg4(b), and the maps

fg:X—)Y, gziX—>Z, h22X—>W,

where X = {2, 2>} in which z; and z, are 8-adjacent,

Y = {y1 := fa(21),y2,y3} is 4-connected,

Z = {z1 := g2(x1), 22, 23} is 18-connected, and

W = {ws := ha(z1), ws, w3, wy, ws } is 6-connected.
Then, we now prove that K-(8,4)-, K-(8,18)-, and K-(8, 6)-continuities of fs,
g2, and hy imply KD-(8,4)-, KD-(8, 18)-, and KD-(8, 6)-continuities of fa, go,
and hs, respectively.

(Case 4-2-4) Let us consider the two spaces X2 g and Y24 in Fig.4(b). By

the hypothesis of K-(8,4)-continuity of f2 at the point z;, we see that

fa(Ng(z1,1)) = f2(Ng (21,1)) C Ni(fa(1), 5);
fo(Ng (z1,1)) C Ns(fa(21))
because the smallest open set containing the point fa(x;) is the set ¥ and

{z1} € T%, where the number s is assumed in Remark 3.3. Then, fo(22)
should be a pure closed point satisfying (3.5) by the same method as the case

(3.5)
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(n1,k1) = (2,4) = (no, ko) above. Thus the map f> satisfies digital (8,4)-
continuity at the point z; because fy(z2) = fa(z1) € Na(fo(z1),1), which
means that fo is KD-(8,4)-continuous at the point z;.

(Case 4-2-5) Consider the two spaces Xo 3, Z3,18, and the map go : X — Z
in Fig.4(b). By the hypothesis of K-(8,18)-continuity of g, at the points z;
and z3, we obtain

92(Ng(z1,1)) = g2(Ng (71,1)) C Nyg(ga(z1), 5);
92(Ng (z1,1)) C Nag(g2(1))

because the smallest open set containing the point go(z;) is the set Z, where
the number s is assumed in Remark 3.3. Then g3(z3) should be a pure closed
point satisfying (3.6) by the same method as the case (n1,k) = (3,18) and
(no, ko) = (2,4) above. Thus the map g, satisfies KD-(8, 18)-continuity at the
point z1 because gs(z2) € Nig(g1(z1),1).

(Case 4-2-6) Consider the two spaces Xo g, W3¢, and the map he : X - W
in Fig.4(b). By the hypothesis of K-(8, 6)-continuity of hy at the points z; and
To, we obtain

{h2(Ns(931, 1)) = ha(Ng (21,1)) C N (ha(21), 8); }

(3.6)

(3.7) ha(Ng (21,1)) C Nog(ho(z1))

because the smallest open set containing the point hs(xy) is the set W, where
the number s is assumed in Remark 3.3. Then hy(z3) should be a pure closed
point satisfying (3.7) by the same method as the case (n;,k;) = (3,6) and
(no, ko) = (2,4) above. Thus he(z1) = ha(z2), which means that the map hy
satisfies KD-(8, 6)-continuity at the point z; because ha(z2) € Ng(ha(z1),1).

(Case 5) Consider the case that z; is a pure closed point and f(x1) is a pure
closed point.

(Case 5-1) If k1 = 3™ — 1, then K-(kg, k1)-continuity of f: Xng ko = Yo, ks
implies KD-(kg, k1 )-continuity of f for any X, &, because

NB"l-—l(f(xl)v 1) = Ngnl—l(f(x1)7 1) and

for some Ng, (z,7) C Xug ko>

f(Ng (@, 7)) C Nami 1 (f(21),1) = Ngny 1 (£(22),1).

Thus, for any point z; € X, f(Ng,(z1,1)) C N3ni—1(f(z1),1)) because if there
is Ny (z1,7), then Ny (21,1) C Ng (z1,7), where the number r is assumed in
Remark 3.3.

(Case 5-2) If k; # 3™ — 1, consider a pure closed point ;1 € X. Then the
point z3 € Ny, (1, 1) should be a mixed point or a pure open point depending
on the kp-adjacency of X, ,. By Remark 3.3 and the K-(ko, k1)-continuity of
f at the two distinct points z; and z2 € Ng,(z1,1), we obtain

(38) f((l?g) € Nkl (f(]}]_), 1)
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If not, suppose that there is a point 3 € Ny, (z1,1) with #; # zo which does
not satisfy (3.8). Then we have a contradiction to the K-(ko, k1 )-continuity of
f at the point zo by the similar method as Case 4-2.

Precisely, for the point z» which is a mixed point or a pure open point, f(z2)
should be a pure closed point or a mixed point in Ng, (f(x1)). If not, suppose
that f(x2) is a pure open point in Ny, (f(z1)). Then we have a contradiction
to the K-(ko, k1 )-continuity of f at the point z5 by the same method as Case
4-2 because k3 # 3™ — 1. Next, suppose that f(z3) is a mixed point such
that f(z2) ¢ Ni,(f(z1)). Then we also have a contradiction to the K-(ko, k1 )-
continuity of f at the point zo. Thus f(z2) should be a pure closed point or a
mixed point in Ng, (f(z1)). Therefore the map f is digitally (ko, k1)-continuous
at the point z;, which means that the map f is KD-(ko, k1 )-continuous at the
point ;.

As an example related to Case 5-2, in cases (n1, k1) € {(2,4),(3,18),(3,6)}
and (no, ko) € {(2,4),(2,8)}, see Fig.5(a) and (b) with the same method as
Case 4-2. Furthermore, even if we can examine the cases such as (ng, ko) €
{(3,6),(3,18),(3,26)} and (ni,k1) € {(2,4),(3,6),(3,18)}, we now investi-
gate the cases (n1,k1) € {(2,4),(3,6)} and (ng,ko) € {(3,18),(3,26)} in
Fig.5(c), where X = {z1,22} in which z; and z, are 18-adjacent and Z =
{z1 := g3(21), 22, 23,24} is 6-connected. Assume a K-(18, 6)-continuous map
93 : X318 — Zs g (see Fig.5(c)). Let us examine gs(z2). By the K-(18,6)-
continuity of gs at the pure closed point z; and a mixed point 22 € Nyg(z1, 1),
we obtain

(39 05(Njg(ar, 1) € Nao(gs(z)
because the smallest open set containing the point gs(z;) is the set Z, where
the number s is considered in Remark 3.3. Then gs(z3) should be a pure closed
point or a certain mixed point in Ng(gs3(z1)).

If not, suppose that gs(zs) is a pure open point in Nsg(gs(z1)) such as
93(z2) = 24 € Z in Fig.5(c). Then we have a contradiction to the K-(18, 6)-
continuity of g5 at the point 5 because gs(Nig(z2,1)) € N (gs(z2),1)), where
Ng(g3(x2),1) = {23, 24} because {gs(z2)} € T5.

Besides, the mapping gs(z2) = 23 € Z in Fig.5(c) cannot be successful either
owing to the K-(18, 6)-continuity of g3 at the point zo because gs(Nyg(z2,1)) €
N¢(gs(z2),1), where {2, 23,24} = N¢(g3(z2), 1) because the set {23, 24} is the
smallest open set in T3 containing the point z3.

Besides, the smallest open set containing the point 25 is the set {22, 23, 24}
Thus N¢(22,2) contains the point gz(z1). Thus, by the hypothesis of the K-
(18, 6)-continuity of gs at the points z; and z2, we obtain gs(Nig(z1,1)) C
N¢(22,2). Thus g3(z2) should be equal to the point gs(z1) or 23 € Ng(gs(x1))
by (3.9), which means that g5 is a KD-(18,6)-continuous map at the point
z1. The other cases in Fig.5(c) can be also examined to prove that K-(ko, k1)-
continuity implies KD-(ko, k1 )-continuity by the same method as the above (see

{gs(le(wl, 1)) = g5(Ni3(z1,1)) C Ne(gs(z1), 9); }
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Fig.5(c)), where (ko, k1) € {(6,4), (6,6), (6,18), (18,4), (18,18), (26,4), (26,6),

(26, 18)}.

(Case 6) Assume that z, is a mized point and f(z1) is a pure closed point.
(Case 6-1) If k; = 3™ — 1, then K-(ko,k1)-continuity of f leads to KD-
(ko, k1)-continuity of f for any X, &, by the same method as Cases 4-1 and

5-1.
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(Case 6-2) Let us consider the case that k; # 3™ — 1. Then the point
Ty € Nio(z1,1) (see Fig.6(a)) should be a mixed point, a pure open point, or
a pure closed point depending on the kg-adjacency of X, x, (see Fig.6).

First, if the point z, is a pure closed point in Ng,(z1,1), then f(z2) should
be a pure closed point in Ny, (f(z1)) and finally f(z2) = f(z1) owing to the
K-(ko, k1)-continuity of f at the points z; and z» by the same method as Case
5-2. Second, if the point z3 is a pure open point in Ni,(z1,1) (see Fig.6(a)),
then f(z,) should be a pure closed point or a mixed point in Ny, (f(z,)) owing
to the K-(ko, k1)-continuity of f at the points z; and z» by the same method
as Case 5-2.

Third, if the point z; is a mixed point in Ng,(z1,1), then f(z2) can be
mapped into the point f(z1) or a mixed point in Ny, (f(z1)), depending on the
ki-adjacency of Y,, &, , owing to the K-(ko, k1 )-continuity of f at the points z;
and zs.

Thus it turns out that K-(ko, k1 )-continuity of f : X n, — Yk, n, implies
KD-(kqg, k1 )-continuity of f.

For example, a K-(4, 4)-continuous map fi : X2 4 = Y24 can be assumed in
two fashions depending on the location of the point zo € Ny(z;) in Fig.6(a)
and Y = {y; := fi(=1),vy2,ys} is 4-connected. Then the point x5 € Ny(z1,1)
with z; # 22 can be assumed to be a pure closed point or a pure open point
(see Fig.6(a)). Let us now examine f(z2). By the K-(4,4)-continuity of f; at
the mixed point 21, we obtain

fi(Na(z1,1)) = fi(Ng(21,1)) C Ni(fu(z1), 8);
[i(Ni(z1,1)) C Ne(fr(z1)

because N (z1,1) = X = Ny(z1,1) and the smallest open set containing the
point fi(z1) is the set Y, where the number s is considered in Remark 3.3. If
the point z3 € X is a pure closed point, then f;(z3) should be a pure closed
point in Ny (f1(z1)), i.e., fi(z2) ¢ {y2,y3} owing to the K-(4, 4)-continuity of f;
at the points z; and z, and finally, fi(z1) = fi(z2) by (3.10). If the point z; is
a pure open point (see Fig.6(a)), then f;(z3) should be a mixed point or a pure
closed point in N4(f1(z1)) owing to the K-(4, 4)-continuity of f; at the points z;
and z,. Besides, assume a K-(8,4)-continuous map fs : X — Y with the same
hypothesis above (see Fig.6(b)). Now for a point x5 € Ng(z1,1) — Ny(z1,1), let
us examine fa(z2). Since the point 2, is a mixed point (see Fig.6(b)), fo(z2)
should be equal to the point fy(z1) or a mixed point y2 € N4(f2(z1)) owing to
the K-(8, 4)-continuity of f, at the points z; and x5, which means that the map
f2 is a KD-(8,4)-continuous map at the point z;. The other cases in Fig.6(c)
such as

(3.10)

fa:Z318 Yoy and gs:Z3i3 > Wag
fa:Z326 = Yoy and gy Z306 > Wag

can be also examined to prove the assertion by the same method above.
(Case 7) Assume that z; is a pure open point and f(z;) is a mized point.
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(Case 7-1) If k; = 3™ — 1, then X-(kq, k1)-continuity of f leads to KD-
(ko, k1 )-continuity of f for any ko-adjacency of Xn, k, by the same method as

Case 6-1.

(Case 7-2) Let us consider the case k; # 3™ — 1. Then the point zo €
Ni,(z1,1) should be a mixed point or a pure closed point in Ny (f(z1),1)
depending on the kg-adjacency of Xp, x,. If the point z2 is a mixed point
in Ni,(x1,1), then f(z2) should be equal to the point f(z1) or a pure closed
point in Ng, (f(z1)) because k1 # 3™ — 1. Precisely, if f(z2) ¢ Nk, (f(z1)),
then we have a contradiction to the K-(kg, k1)-continuity of f at the point z
by the similar methods as Case 4-2. Next, suppose that f(z2) is a mixed point
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in Ni,(f(z1),1) and f(z1) # f(x2), then we also have a contradiction to the
K-(ko, k1)-continuity of f at the point zo. Besides, if a3 € Ni,(z1,1) is a pure
closed point, then f(z3) should be a pure closed point in N, (f(z1)) or the
point f(z;) owing to the K-(ko, k1 )-continuity of f at the points z; and z,.
Consequently, K-(ko, k1)-continuity of f : Xng ke — Y,k 18 proved to be

SANG-EON HAN

KD-(kq, k1 )-continuity of f.
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For example, assume a K-(4, 4)-continuous map f1 : Xo 4 — Y24 in Fig.7(a),
where X = {z1,22} in which z; and z; are 4-adjacent and ¥ = {y; =
fi(z1),y2,y3} is 4-connected. Precisely, let us examine fi(zz). By the K-
(4, 4)~continuity of f; at the pure open point z; in Fig.7(a) we obtain

(3.11) {fl(N4($1, 1)) = fi(N}(z1,1)) C N (fi(z1), 8); }

fi(Ni(z1,1)) C Ne(fi(z1))

because N (fi(z1),1) =Y and {x,} € T%, where the number s is considered
in Remark 3.3. Thus, for the mixed point zy, fi{z2) should be equal to the
point f(z1) or the point y2 € Ny(f1(z1)) owing to the K-(4, 4)-continuity of f;
at the points z; and z3 by (3.11). Besides, assume a K-(8,4)-continuous map
fo: Xog — Yo 4, where X = {z1, 2, } with 8-adjacency and V" = {fo(z1), 92,93}
above (see Fig.7(b)). Let us now examine fa(x2). Then, for the pure closed
point 3 € Ng(x1,1) — Ny(x1,1) (see Fig.7(b)), fo(z2) should be either a pure
closed point in Ng(fa(z1)) such as yo or fo(z;) owing to the K-(8, 4)-continuity
of f» at the points z; and z2, which means that the map f2 is a KD-(8,4)-
continuous map at the point zy.

Similarly, both a K-(6, 4)-continuous map f3 : Z3 6 — Y24 and a K-(6,6)-
continuous map gz : Zs,s — Va6 in Fig.7(c) can be proved tc be KD-(6,4)- and
KD-(6, 6)-continuous maps, respectively, where V = {g3(21),v2,v3,v4} and
Z = {z, 29, 73, 24} are 6-connected, respectively.

(Case 8) Assume that 2| is a pure closed point and f(z) is a mized point.

{Case 8-1) If ky = 3™ — 1, then K-(ko, k1)-continuity of f leads to KD-
(ko, k1 )-continuity of f for any X, &, by the same method as Case 5-1.

(Case 8-2) Let us consider the case k; # 3™ — 1. Then the point z3 €
Ny, (z1,1) should be a pure open point or a mixed point depending on the ko-
adjacency of X, &, If the point z is a mixed point in Ng,(z1,1), then f(z2)
can be mapped into the point f(z;), a mixed point in Ny, (f(z1)), or a pure
open point in N, (f(z1)) depending on the kj-adjacency of Y, &, owing to
the K-(kp, k1 )-continuity of f at the points z; and z5. Precisely, f(z3) cannot
be mapped into a pure closed point in Ng, (f(z1)) owing to the K-(ko, k; )-
continuity of f at the points z, and x,. Besides, if the point x4 is a pure open
point in Ny, (x;,1), then f(xy) should be equal to the point f(z;) or a certain
point in N, (f(z1)) owing to the K-(kg, k1 )-continuity of f at the points z;
and Z2.

For example, assume a K-(4, 4)-continuous map f; : Xy 4 = Y54 in Fig.8(a),
where X = {21,22} and Y = {y1 = fi(21),92,93}. Let us now examine
fi(z2).

If 25 is a mixed point, then fi(z1) = fi(z2) or fi(z1) = us.

If not, suppose that f; (z2) = y», then we have a contradiction to the K-(4, 4)-
continuity of f; at the points z; and z» because fi  ({fi(z1),y3}) = {z:1} ¢ T%,
‘where {fi(21),y3} € TZ.
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Besides, assume a K-(8,4)-continuous map fy @ Xog —+ Y24, where X =
{z1, 22} with 8-adjacency and {f2(%1),y2,y3} with 4-adjacency in Fig.8(b).
Let us now examine fo(zs). For the point z2 € Ng(z1,1) — Ny(z1,1) which
is a pure open point (see Fig.8(b)), we see that fa(z2) € {f2(z1),ys} owing
to the K-(8,4)-continuity of fs at the points z; and zs and further, because
the smallest open set containing the point zy € X is the set {xy,z2} and
TZ = {Y,¢,{f2(21),v3}, {ys}}, which means that the map f, is a KD-(8,4)-
continuous map at the point z;.

Similarly, by the same method as Case 7-2, the cases in Fig.8(c) also show
that a K-(18,4)-continuous map fy : Z315 — Y24 and a K-(18, 6)-continuous
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map gs : Z3is — Vag are also KD-(18,4)- and KD-(18, 6)-continuous maps,
respectively.

{Case 9) Assume that both z; and f(z;) are mized points.

(Case 9-1) If ky = 3™ — 1, then K-(ko, k1)-continuity of f leads to KD-
(ko, k1 )-continuity of f for any X, k, by the same method as Case 5-1.

(Case 9-2) Let us consider the case ky # 3™ — 1. Then the point zy €
Nio(z1, 1) should be a mixed point, a pure open point, or a pure closed point
depending on the kp-adjacency of X, ,.

First, if the point x5 is a pure closed point, then f(z2) should be a pure
closed point in Ny, (f(z1)) or f(z;) depending on the kj-adjacency of ¥y, &,
owing to the K-(kg, ki )-continuity of f at the points z; and z3. Second, if
the point z, is a pure open point in Ny, (z;,1), then f(z2) should be the
point f(z1), a mixed point in N, (f(z1)), or a pure open point in Ny, (f(z1))
depending on the kj-adjacency of Y,,, &, owing to the K-(ko, k; )-continuity of
f at the points z; and z2. Third, if the point 3 is a mixed point in Ng,(z1,1),
then f{zy) € Ng, (f(21)) can be mapped into the point f{z1), a mixed point,
a pure closed point, or a pure open point, depending on the k;-adjacency of
(Y, ky, Ty*), owing to the K-(ko, k )-continuity of f at the points x; and x,.

For example, assume a K-(4,6)-continuous map hy : Xoyg — Wie (see
Fig.9(a)), where X = {z,z2} can be considered in two fashions according
to the location of 2 € Ny(zz,1) and W = {wy := hi{21), w2, w3, ws, ws } with
6-adjacency. Let us now examine hy(z2). By the K-(4,6)-continuity of hy at
the points z; and zo, we obtain

(3.12 hi(Na(z1,1)) = b (NS (21,1)) C N§(hi(z1),8);
12) B (N7 (21, 1)) C Nog(hs(21))

because Na(z1,1) = X, N§(hi(21),2) = W and further, there is no Ng (h1(21),
1) because the smallest open set containing the point #; (z1) is the set {h;(z1),
wyg, ws }, where the number s is considered in Remark 3.3.

Then, the point x» € Ny(z1,1) with z, # z» is a pure closed point or a pure
open point (see Fig.9(a)). In case the point x4 is a pure closed point, hy{zs)
should be a pure closed point in Ny(hi(z;1)) or hi(z:) owing to the K-(4,6)-
continuity of h; at the points z; and z, and (3.12), which means that h; is a
KD-(4, 6)-continuous map.

In case the point z5 is a pure open point, hi{x2) should be mapped into
{h1(z1)} or hi(z2) = ws because {wq, w5} € T3, If not, suppose hy(z2) = wo,
then we have a contradiction to the (4, 6)-continuity of h; at the points z; and
x2, which means that hy is a KD-(4, 6)-continuous map.

Besides, assume a K-(8, 6)-continuous map hy : X9 3 — W5 ¢ with the same
hypothesis above (see Fig.9(b)). Let us now examine hy(z2). Then, since the
point z2 € Ng(xy,1) — Ny(z1,1) is a mixed point (see Fig.9(b)), ho(xs) should
be a pure closed point wsy, ws, or hy (z;), which means that hy is a KD-(8, 6)-
continuous map.
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Furthermore, in Fig.9(c) for the other cases (ng, ko) € {(3,6), (3,18),(3,26)}

and (ny, k1) € {(2,4),(3,6),(3,18)}, K-(ko, k1 )-continuity implies KD-(kg, k1 )-
continuity. O

Corollary 3.6. (1) The Cases (1), (2), and (3) of Theorem 8.5 can be extended
into the following. For o map [ Xng ko = Yoik,ns € Nji € {0,1}, any K-
(ko, k1) -continuity implies KD-(ko, k1 }-continuity.

(2) As we referred in the proof of Theorem 3.5, for a map f : Xpo by —
Yo, krs K-(ko, k1)-continuity of f at some point & € X need not imply KD-
(ko, k1)-continuity of f at the point x € X. Namely, K-(ko, k1)-continuity of f
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need not imply KD-(ke, k1 )-continuity of f from a local point of view contrary
to a global point of view.

Indeed, the converse of Theorem 3.5 does not hold. Precisely, KD-(ko, k1 )-
continuity of f: Xy, k, = Yay,k, need not imply K-(ko, k1 )-continuity of f be-
cause for some point ¢ € X ory € Y we may not have Ni (z,7) or Ni (f(z), s)
in Remark 3.3.

Motivated by Theorem 3.5, we obtain the following because for every point
z € X with Xnygn_l, N;nwl(x, 1) = N3n_1(3’/‘, 1) {11]

Theorem 3.7. For a map f : Xpg ko = Yoy ko of (Ko, k1) = (3™ — 1,3" —
1), then the notions of KD-{ko, ky)-continuity and K-(ko, k1 )-continuity are
equivalent each other.

In terms of Remark 3.1, Theorems 3.5 and 3.7, and Corollary 3.6, four kinds
of continuities in computer topology have been investigated and compared with
each other. Then we have the following query:

Under what condition are the above-mentioned three kinds of continuities in
Definitions 2, 3, and 5 equivalent to each other?

We now have an answer to the question as follows.

Theorem 3.8. For a map f : Xng ko = Yok, and 1 < n; < 3,0 € {0,1},
assume that
(1) any points z € X and f(z) € Y have Nj (z,1) C X and Ni (f(z),1) C
Y, respectively,
(2) f(X*) is ky-connected, where X* is any ko-connected subset of X.
Then the three kinds of continuities in Definition 2, 3, and 5 are equivalent to
each other.

Proof. With the hypothesis it suffice to prove that Khalimsky continuity implies
K-{kg, k1 )-continuity via Definitions 2, 3, and 5, Remark 3.4, and Theorem 3.5
because in general

K-(kg, k1)-continuity => KD-(kq, ki )-continuity = Khalimsky continuity.

Due to the Khalimsky continuity of f and the existence of both Ny (z,1)
and N{ (f(z),1), we obtain both a smallest open set O, € Tx° containing
the point x such that O, C Nj (z,1) and a smallest open set Og(,) € T
containing the point f(x) such that Oy C Ni (f(z),1). Furthermore, for an
open set Oy () € Ty', we have f(O,) C Of(y).

Thus we obtain

(3.13) f(O2) C f(Ng (=, 1)) C Ng, (f(2),1) C N, (£(=),9),
where s is the number in Remark 3.3.

If not, in (3.13), suppose that f(Ny (x,1)) is not a subset of N} (f(z),1).
Then there is a point ' € N; (z,1) such that f(z') ¢ N{ (f(2),1) so that
Ff(z) is not ky-adjacent to f{z'), which contradicts to the condition (2) of the
hypothesis. |
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Example 3.9. Consider an (18, 2)-continuous map in Fig.10
fiAs318 —[0,2]z

for which f(ay) = 0,f(a2) = 2, f({as,as}) = {1} in Fig.10, where A =
{a1,a2,a3,a4}. Then we observe that T3 is established with the following base
{{a1},{as},{as,as}, {a4}} and further, Tig 51, = {[0,2]z, ¢, {1}, {1,2},{0,1}}.
Since the map f : A3 15 — [0,2]z satisfies the hypothesis of Theorem 3.8, we
see that the three kinds of continuities of f in Definitions 2, 3, 5 are equivalent
to each other.

FIGURE 10

We have used a digital topological category, briefly DTC, consisting of three
things:

(1) A class of objects (X, k) in Z™

(2) For every ordered pair of objects (X, ko) in Z™° and (Y, k1) in Z™ as
morphisms, all (ko, k; }-continuous maps f : (X, ko) = (Y, k1 });

(3) For every ordered triple of objects (X, ko) in Z™°, (Y, k;) in Z™, and
(Z,k3) in Z™ and a function associating to a pair of morphisms f :
(X, ko) — (Y,k1) which is a digitally (ko, k1)-continuous map and
g (Y,k1) — (Z,k2) which is a digitally (k;, k2)-continuous map,
their composite go f : (X, ko) — (Z, k) which is a digitally {(ko, k2)-
continuous map.

Then we easily see that DTC satisfies the following axioms: Associativity and
identity.

On the basis of Definitions 3, 4, 5 and by the same method as the es-
tablishment of DTC, three kinds of categories motivated by the Khalimsky
continuity, K-(ko, k1)-continuity, the (ko, k1 )-continuity, and the KD-(ko, k1)-
continuity, respectively. These are denoted by KTC, KCTC, CTC, KDTC,
respectively.
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4. Classification of computer topological spaces up to each of
K-(ko, k1)-, (ko,k1)-, KD-(kg, k1)-homeomorphisms, and
Khalimsky homeomorphism

In DTC, in order to classify digital images (X, k) up to digital k-homeo-
morphism we have used the following.

Definition 6 ([6, Digital (ko, k1)-homeomorphism]). (see also [7, 8, 9, 12, 13,
14]) For two spaces (X, ko) and (Y, k1), a function f : X — Y is said to be a
digital (ko, k1 )-homeomorphism if
(1) the map f is bijective, and
(2) the map f is a digitally (ko, k1)-continuous map and further, f~! is a
digitally (k1, ko)-continuous map.
Then we say that the space X is digitally (ko, k; )-homeomorphic to V.

In CTC, in order to classify computer topological spaces X, x up to Khalim-
sky-homeomorphism, KD-k-homeomorphism, k-homeomorphism, or K-k-ho-
meomorphism, we have used the following.

Definition 7 (Khalimsky homeomorphism). For two spaces (X,T%°) and
(Y,Ty'), amap h : X — Y is called a Khalimsky homeomorphism if h is
a Khalimsky continuous bijection and further, h~! : ¥ — X is Khalimsky
continuous.

Definition 8 ([15, KD-(ko, k;)-homeomorphism]). For two spaces Xng 1, and
Yo, k1, a function f: X — Y is said to be a KD-(ko, k1)-homeomorphism if
(1) the map f is bijective, and
(2) the map f is a KD-(ko, k1 )-continuous map and further, f~' is a KD-
(k1, ko)-continuous map.
Then we say that the space X is KD-(kp, k1 )-homeomorphic to Y.

Definition 9 ((ko, k1 )-homeomorphism). For two spaces Xk, and Yp, &, &
map h : X = Y is called a (ko, k1 )-homeomorphism if & is a (ko, k1)-continuous
bijection and further, h=! : Y — X is (k1, ko)-continuous.

Then we say that the space X is (ko, k1 )-homeomorphic to Y.
Definition 10 ([10, K-(ko, k: )-homeomorphism]). For two spaces X, x, and
Yo, ki, amap h: X — Y is called a K-(ko, k1 )-homeomorphism if
(1) his a K-{ko, k1)-continuous bijection, and
(2) 71 :Y = X is K-(k1, ko)-continuous. ,
Then we say that the space X is K-(kg, k1 )-homeomorphic to Y.

By X K. (ko k1) Y, X ®koky) Y, X REKD-(ko,k1) Y, and X =k Y we denote
K-(ko, k1)-, (ko, k1)-, KD-(ko, k1)-homeomorphisms and Khalimsky homeomor-
phism from X, k, t0 Yn, k., respectively. If ng = n; and ky = k1, we use the
notation ¢ &%, instead of * Rk, ko) -

By Remark 3.4 and Theorem 3.5 we obtain the following.



950 SANG-EON HAN

Remark 4.1. We see that X ~k.(to.4,) ¥ = X ®KD.(ko,k) ¥ = X ~kn Y by
Theorem 3.5. Meanwhile, by Remark 3.4 we see that none of X =, 1,) ¥
and X RKp.(ko,k,) ¥ implies the other. Moreover, we see that K-&-, k-, KD-k-
homeomorphisms instead of Khalimsky homeomorphism are so meaningful to
classify computer topological spaces X, .

Motivated by Definitions 1, 2, 3, 5 and Theorem 3.7 and Remarks 3.1 and
4.1, we obtain the following because N3n_1(z,1) = Nj»_;(2,1) in X 3n_1.

Theorem 4.2. For two spaces Xpg kos Yni kis 0nd a function f: X =Y, the
notions of K-(ko, k1)- and KD-(kg, k1)-homeomorphisms are equivalent to each
other if (ko, k1) = (3" —1,3™ —1).

Remark 4.3. In Theorem 4.2 if (ko, k1) # (3™ —1,3™ - 1), then the assertion
does not hold. .

By Theorem 3.8 we obtain the following.

Theorem 4.4. For a map f: Xpg gy = You ki, Gssume that
(1) any pointsz € X and f(z) € Y have N}, (z,1) C X and N{ (f(z),1) C
Y, respectively and
(2) f(X™) is ki-connected, where X* is any ko-connected subset of X.

Then the three kinds of homeomorphisms in Definitions 7, 8, and 10 are equiv-
alent to each other.

Since the five kinds of homeomorphisms in Definitions 6, 7, 8, 9, and 10
are different from each other and their usages depend on the given topological
categories such as KTC, KCTC, KDTC, CTC, and DTC.

5. Summary and concluding remark

We have studied several continuities and homeomorphisms in computer and
digital topology. These have advantages and disadvantages, their usages de-
pend on the situation.

We now adopt a forgetful functor from each of KCTC, KDTC, and CTC
into DTC, denoted by

F*:KCTC - DTC, F*:KDTC—DTC, F*:CTC-»DTC.

By the use of the forgetful functors F* a computer topological space X,
can be transformed into a discrete topological space (or digital image) with
k-adjacency [5, 6, 7, 8, 9]. Furthermore, the current K-(kq, k1)-, (ko, k1)-, and
KD-(kg, k1 )-continuities are also transformed into the digital (ko, k1 )-continuity
in DTC.

In particular, in relation to the computer topological morphology the four
kinds of digital and computer topological homeomorphisms come from Defini-
tions 6, 8, 9, and 10 can be useful to classify digital topological spaces with
k-adjacency and computer topological spaces with k-adjacency, respectively.
Finally, by Remark 3.4, Theorem 3.5, Corollary 3.6, Definitions 2, 3, 4, and 5,
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we now show a distribution diagram among several continuities between com-
puter topological spaces in Z™,1 < n < 3 (see Fig.11). For n > 4, the statement
of Theorem 3.5 at Case 4-2 need to examine as an open problem.

KD- (ko-kn)'
continuity AN
| N O
Khalimsky : K-(kg.k)-
continuity yd continuity
/ X

(ko-ki)-continuity

FiGURE 11. Distribution diagram of several continuities in
computer topology
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