• Title/Summary/Keyword: Keyword clustering

Search Result 85, Processing Time 0.022 seconds

A performance improvement methodology of web document clustering using FDC-TCT (FDC-TCT를 이용한 웹 문서 클러스터링 성능 개선 기법)

  • Ko, Suc-Bum;Youn, Sung-Dae
    • The KIPS Transactions:PartD
    • /
    • v.12D no.4 s.100
    • /
    • pp.637-646
    • /
    • 2005
  • There are various problems while applying classification or clustering algorithm in that document classification which requires post processing or classification after getting as a web search result due to my keyword. Among those, two problems are severe. The first problem is the need to categorize the document with the help of the expert. And, the second problem is the long processing time the document classification takes. Therefore we propose a new method of web document clustering which can dramatically decrease the number of times to calculate a document similarity using the Transitive Closure Tree(TCT) and which is able to speed up the processing without loosing the precision. We also compare the effectivity of the proposed method with those existing algorithms and present the experimental results.

A Study of Personalized Retrieval System through Society of Korean Journal Articles of Science and Technology (개인화 검색시스템에 관한 연구 - 과학기술학회마을을 중심으로 -)

  • Kim, Kwang-Young;Kwak, Seung-Jin
    • Journal of Korean Library and Information Science Society
    • /
    • v.41 no.1
    • /
    • pp.149-165
    • /
    • 2010
  • In this research, we analyze about the general service provided by Society of Korean journal articles of science and technology. Personalized retrieval services which are suitable to the articles service were developed based on this. That is, there are personalized retrieval system based on user's keyword, authors navigation system, automatic topic recommendation system based on author's keyword, and similar user automatic recommendation system. In this research, personalized service methods being suitable to the articles service of Society tries to be considered through the user survey.

  • PDF

Fuel Cell Research Trend Analysis for Major Countries by Keyword-Network Analysis (키워드 네트워크 분석을 통한 주요국 연료전지 분야 연구동향 분석)

  • SON, BUMSUK;HWANG, HANSU;OH, SANGJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.2
    • /
    • pp.130-141
    • /
    • 2022
  • Due to continuous climate change, greenhouse gases in the atmosphere are gradually accumulating, and various extreme weather events occurring all over the world are a serious threat to human sustainability. Countries around the world are making efforts to convert energy sources from traditional fossil fuels to renewable energy. Hydrogen energy is a clean energy source that exists infinitely on Earth, and can be used in most areas that require energy, such as power generation, transportation, commerce, and household sectors. A fuel cell, a device that produces electric and thermal energy by using hydrogen energy, is a key field to respond to climate change, and major countries around the world are spurring the development of core fuel cell technology. In this paper, research trends in China, the United States, Germany, Japan, and Korea, which have the highest number of papers related to fuel cells, are analyzed through keyword network analysis.

A Study of Keyword Spotting System Based on the Weight of Non-Keyword Model (비핵심어 모델의 가중치 기반 핵심어 검출 성능 향상에 관한 연구)

  • Kim, Hack-Jin;Kim, Soon-Hyub
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.381-388
    • /
    • 2003
  • This paper presents a method of giving weights to garbage class clustering and Filler model to improve performance of keyword spotting system and a time-saving method of dialogue speech processing system for keyword spotting by calculating keyword transition probability through speech analysis of task domain users. The point of the method is grouping phonemes with phonetic similarities, which is effective in sensing similar phoneme groups rather than individual phonemes, and the paper aims to suggest five groups of phonemes obtained from the analysis of speech sentences in use in Korean morphology and in stock-trading speech processing system. Besides, task-subject Filler model weights are added to the phoneme groups, and keyword transition probability included in consecutive speech sentences is calculated and applied to the system in order to save time for system processing. To evaluate performance of the suggested system, corpus of 4,970 sentences was built to be used in task domains and a test was conducted with subjects of five people in their twenties and thirties. As a result, FOM with the weights on proposed five phoneme groups accounts for 85%, which has better performance than seven phoneme groups of Yapanel [1] with 88.5% and a little bit poorer performance than LVCSR with 89.8%. Even in calculation time, FOM reaches 0.70 seconds than 0.72 of seven phoneme groups. Lastly, it is also confirmed in a time-saving test that time is saved by 0.04 to 0.07 seconds when keyword transition probability is applied.

The Effectiveness of Hierarchic Clustering on Query Results in OPAC (OPAC에서 탐색결과의 클러스터링에 관한 연구)

  • Ro, Jung-Soon
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.38 no.1
    • /
    • pp.35-50
    • /
    • 2004
  • This study evaluated the applicability of the static hierarchic clustering model to clustering query results in OPAC. Two clustering methods(Between Average Linkage(BAL) and Complete Linkage(CL)) and two similarity coefficients(Dice and Jaccard) were tested on the query results retrieved from 16 title-based keyword searchings. The precision of optimal dusters was improved more than 100% compared with title-word searching. There was no difference between similarity coefficients but clustering methods in optimal cluster effectiveness. CL method is better in precision ratio but BAL is better in recall ratio at the optimal top-level and bottom-level clusters. However the differences are not significant except higher recall ratio of BAL at the top-level duster. Small number of clusters and long chain of hierarchy for optimal cluster resulted from BAL could not be desirable and efficient.

Implementation of Vocabulary-Independent Keyword Spotting System (가변어휘 핵심어 검출 시스템의 구현)

  • Shin Young Wook;Song Myung Gyu;Kim Hyung Soon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.167-170
    • /
    • 2000
  • 본 논문에서는 triphone을 기본단위로 하는 HMM에 의해 핵심어 모델을 구성하고, 사용자가 임의로 핵심어를 추가 및 변경할 수 있도록 가변어휘 핵심어 검출기를 구현하였다. 비핵심어 모델링 방법으로 monophone clustering을 사용한 방법 및 GMM을 사용한 방법의 성능을 비교하였다. 또한 후처리 과정에서 가변어휘 인식구조에 적합한 anti-subword 모델을 사용하였으며 몇 가지 구현방식에 따른 후처리 성능을 검토하였다. 실험결과 비핵심어 모델로 monophone을 clustering하여 사용한 방법보다 GMM을 사용한 경우 약간의 인식성능 개선을 얻을 수 있었으며, 후처리 과정에서 Kullback distance를 이용한 anti-subword 모델링 방식이 다른 방식에 비해 우수한 결과를 나타냈다.

  • PDF

Investigation of Trend in Virtual Reality-based Workplace Convergence Research: Using Pathfinder Network and Parallel Neighbor Clustering Methodology (가상현실 기반 업무공간 융복합 분야 연구 동향 분석 : 패스파인더 네트워크와 병렬 최근접 이웃 클러스터링 방법론 활용)

  • Ha, Jae Been;Kang, Ju Young
    • The Journal of Information Systems
    • /
    • v.31 no.2
    • /
    • pp.19-43
    • /
    • 2022
  • Purpose Due to the COVID-19 pandemic, many companies are building virtual workplaces based on virtual reality technology. Through this study, we intend to identify the trend of convergence and convergence research between virtual reality technology and work space, and suggest future promising fields based on this. Design/methodology/approach For this purpose, 12,250 bibliographic data of research papers related to Virtual Reality (VR) and Workplace were collected from Scopus from 1982 to 2021. The bibliographic data of the collected papers were analyzed using Text Mining and Pathfinder Network, Parallel Neighbor Clustering, Nearest Neighbor Centrality, and Triangle Betweenness Centrality. Through this, the relationship between keywords by period was identified, and network analysis and visualization work were performed for virtual reality-based workplace research. Findings Through this study, it is expected that the main keyword knowledge structure flow of virtual reality-based workplace convergence research can be identified, and the relationship between keywords can be identified to provide a major measure for designing directions in subsequent studies.

Analysis of News Articles on Child Welfare Policies in South Korea: K-Means Clustering (대한민국 정권별 아동복지정책 관련 뉴스 기사 분석: K-평균 군집 분석)

  • Kim, Eun Joo;Kim, Seong Kwang;Park, Bit Na
    • Journal of East-West Nursing Research
    • /
    • v.29 no.2
    • /
    • pp.185-195
    • /
    • 2023
  • Purpose: The purpose of this study is to analyze changes of child welfare policies and provide insights based on the collection and classification of newspaper articles. Methods: Articles related to child welfare policies were collected from 1990, during the Kim, Young-sam administration, to May 9, 2022, under the Moon, Jae-in administration. K-Means clustering and keyword Term Frequency-Inverse Document Frequency analysis were utilized to cluster and analyze newspaper articles with similar themes. Results: The administrations of Kim, Young-sam, Kim, Dae-jung, Roh, Moo-hyun, and Park, Geun-hye were classified into two clusters, and the Lee, Myung-bak and Moon, Jae-in administrations were classified into three clusters. Conclusion: South Korea's child welfare policies have focused on ensuring the safety and healthy development of children through diverse policies initiatives over the years. However, challenges related to child protection and child abuse persist. This requires additional resources and budget allocation. It is important to establish a comprehensive support system for children and families, including comprehensive nursing support.

A Single-End-Point DTW Algorithm for Keyword Spotting (핵심어 검출을 위한 단일 끝점 DTW알고리즘)

  • 최용선;오상훈;이수영
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.209-219
    • /
    • 2004
  • In order to implement a real time hardware for keyword spotting, we propose a Single-End-Point DTW(SEP-DTW) algorithm which is simple and less complex for computation. The SEP-DTW algorithm only needs a single end point which enables efficient applications, and it has a small wont of computations because the global search area is divided into successive local search areas. Also, we adopt new local constraints and a new distance measure for a better performance of the SEP-DTW algorithm. Besides, we make a normalization of feature same vectors so that they have the same variance in each frequency bin, and each frame has the same energy levels. To construct several reference patterns for each keyword, we use a clustering algorithm for all training patterns, and mean vectors in every cluster are taken as reference patterns. In order to detect a key word for input streams of speech, we measure the distances between reference patterns and input pattern, and we make a decision whether the distances are smaller than a pre-defined threshold value. With isolated speech recognition and keyword spotting experiments, we verify that the proposed algorithm has a better performance than other methods.

Co-author and Keyword Networks and their Clustering Appearance in Preventive Medicine Fields in Korea: Analysis of Papers in the Journal of Preventive Medicine and Public Health, $1991{\sim}2006$ (국내 예방의학 분야의 공저자.핵심어 네트워크와 군집 양상 - 대한예방의학회지($1991{\sim}2006$) 게재논문의 분석 -)

  • Jung, Min-Soo;Chung, Dong-Jun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.41 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Objectives : This study evaluated knowledge structure and its effect factor by analysis of co-author and keyword networks in Korea's preventive medicine sector. Methods : The data was extracted from 873 papers listed in the Journal of Preventive Medicine and Public Health, and was transformed into a co-author and keyword matrix where the existence of a 'link' was judged by impact factors calculated by the weight value of the role and rate of author participation. Research achievement was dependent upon the author's status and networking index, as analyzed by neighborhood degree, multidimensional scaling, correspondence analysis, and multiple regression. Results : Co-author networks developed as randomness network in the center of a few high-productivity researchers. In particular, closeness centrality was more developed than degree centrality. Also, power law distribution was discovered in impact factor and research productivity by college affiliation. In multiple regression, the effect of the author's role was significant in both the impact factor calculated by the participatory rate and the number of listed articles. However, the number of listed articles varied by sex. Conclusions : This study shows that the small world phenomenon exists in co-author and keyword networks in a journal, as in citation networks. However, the differentiation of knowledge structure in the field of preventive medicine was relatively restricted by specialization.