• Title/Summary/Keyword: Key Uncertainty Factor

Search Result 39, Processing Time 0.023 seconds

Analysis of the Effectiveness of Project Risk Management (PRM) on the Project Success: Focused on the Implementation Phase of Overseas Construction Projects (프로젝트 리스크 관리(PRM)가 프로젝트 성공에 미치는 효과성 분석: 해외건설사업 수행단계 전반을 중심으로)

  • Sullim Jung;Dae-Cheol Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.221-230
    • /
    • 2023
  • Under increased complexity and uncertainty of overseas construction projects, it is important for construction companies to improve their own project risk management capabilities instead of risk-taking strategies to secure competitiveness in the overseas construction market. Although most of the risks occur in project execution stage, many previous studies focused on planning stage including risk identification and analysis among PRM process. Therefore, this study aims to verify the effectiveness of whole PRM process during project execution stage through empirical study on participants of overseas construction projects. As the result it was found that first, the factor directly affects the project success is the execution process of PRM. It implies that appropriate actions such as appointing charged manager for risks, timely implementation of responding plan, continuous risk monitoring and updating established plan are the key for contribution to the project success. Second, the importance of communication in PRM is also found, which is not conducted at a specific but throughout the entire PRM process and need to be managed as essential factor for successful PRM..

Evaluation of the CNESTEN's TRIGA Mark II research reactor physical parameters with TRIPOLI-4® and MCNP

  • H. Ghninou;A. Gruel;A. Lyoussi;C. Reynard-Carette;C. El Younoussi;B. El Bakkari;Y. Boulaich
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4447-4464
    • /
    • 2023
  • This paper focuses on the development of a new computational model of the CNESTEN's TRIGA Mark II research reactor using the 3D continuous energy Monte-Carlo code TRIPOLI-4 (T4). This new model was developed to assess neutronic simulations and determine quantities of interest such as kinetic parameters of the reactor, control rods worth, power peaking factors and neutron flux distributions. This model is also a key tool used to accurately design new experiments in the TRIGA reactor, to analyze these experiments and to carry out sensitivity and uncertainty studies. The geometry and materials data, as part of the MCNP reference model, were used to build the T4 model. In this regard, the differences between the two models are mainly due to mathematical approaches of both codes. Indeed, the study presented in this article is divided into two parts: the first part deals with the development and the validation of the T4 model. The results obtained with the T4 model were compared to the existing MCNP reference model and to the experimental results from the Final Safety Analysis Report (FSAR). Different core configurations were investigated via simulations to test the computational model reliability in predicting the physical parameters of the reactor. As a fairly good agreement among the results was deduced, it seems reasonable to assume that the T4 model can accurately reproduce the MCNP calculated values. The second part of this study is devoted to the sensitivity and uncertainty (S/U) studies that were carried out to quantify the nuclear data uncertainty in the multiplication factor keff. For that purpose, the T4 model was used to calculate the sensitivity profiles of the keff to the nuclear data. The integrated-sensitivities were compared to the results obtained from the previous works that were carried out with MCNP and SCALE-6.2 simulation tools and differences of less than 5% were obtained for most of these quantities except for the C-graphite sensitivities. Moreover, the nuclear data uncertainties in the keff were derived using the COMAC-V2.1 covariance matrices library and the calculated sensitivities. The results have shown that the total nuclear data uncertainty in the keff is around 585 pcm using the COMAC-V2.1. This study also demonstrates that the contribution of zirconium isotopes to the nuclear data uncertainty in the keff is not negligible and should be taken into account when performing S/U analysis.

Analysis on Adequacy of the Satellite Soil Moisture Data (AMSR2, ASCAT, and ESACCI) in Korean Peninsula: With Classification of Freezing and Melting Periods (인공위성 기반 토양 수분 자료들(AMSR2, ASCAT, and ESACCI)의 한반도 적절성 분석: 동결과 융해 기간을 구분하여)

  • Baik, Jongjin;Cho, Seongkeun;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.625-636
    • /
    • 2019
  • Soil moisture is a representative factor that plays a key role in hydrological cycle. It is involved in the interaction between atmosphere and land surface, and is used in fields such as agriculture and water resources. Advanced Microwave Scanning Radiometer 2 (AMSR2), Advanced SCATterometer (ASCAT), and European Space Agency Climate Change Initiative (ESACCI) data were used to analyze the applicability and uncertainty of satellite soil moisture product in the Korean peninsula. Cumulative distribution function (CDF) matching and triple collocation (TC) analysis were carried out to investigate uncertainty and correction of satellite soil moisture data. Comparisons of pre-calibration satellite soil moisture data with the Automated Agriculture Observing System (AAOS) indicated that ESACCI and ASCAT data reflect the trend of AAOS well. On the other hand, AMSR2 satellite data showed overestimated values during the freezing period. Correction of satellite soil moisture data using CDF matching improved the error and correlation compared to those before correction. Finally, uncertainty analysis of soil moisture was carried out using TC method. Clearly, the uncertainty of the satellite soil moisture, corrected by CDF matching, was diminished in both freezing and thawing periods. Overall, it is expected that using ASCAT and ESACCI rather than AMSR2 soil moisture data will give more accurate soil moisture information when correction is performed on the Korean peninsula.

MEASURING THE INFLUENCE OF TASK COMPLEXITY ON HUMAN ERROR PROBABILITY: AN EMPIRICAL EVALUATION

  • Podofillini, Luca;Park, Jinkyun;Dang, Vinh N.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.151-164
    • /
    • 2013
  • A key input for the assessment of Human Error Probabilities (HEPs) with Human Reliability Analysis (HRA) methods is the evaluation of the factors influencing the human performance (often referred to as Performance Shaping Factors, PSFs). In general, the definition of these factors and the supporting guidance are such that their evaluation involves significant subjectivity. This affects the repeatability of HRA results as well as the collection of HRA data for model construction and verification. In this context, the present paper considers the TAsk COMplexity (TACOM) measure, developed by one of the authors to quantify the complexity of procedure-guided tasks (by the operating crew of nuclear power plants in emergency situations), and evaluates its use to represent (objectively and quantitatively) task complexity issues relevant to HRA methods. In particular, TACOM scores are calculated for five Human Failure Events (HFEs) for which empirical evidence on the HEPs (albeit with large uncertainty) and influencing factors are available - from the International HRA Empirical Study. The empirical evaluation has shown promising results. The TACOM score increases as the empirical HEP of the selected HFEs increases. Except for one case, TACOM scores are well distinguished if related to different difficulty categories (e.g., "easy" vs. "somewhat difficult"), while values corresponding to tasks within the same category are very close. Despite some important limitations related to the small number of HFEs investigated and the large uncertainty in their HEPs, this paper presents one of few attempts to empirically study the effect of a performance shaping factor on the human error probability. This type of study is important to enhance the empirical basis of HRA methods, to make sure that 1) the definitions of the PSFs cover the influences important for HRA (i.e., influencing the error probability), and 2) the quantitative relationships among PSFs and error probability are adequately represented.

Technology Policy Issues on the Effect of Technology Development Factor on Innovation Performance (기술개발 요인이 혁신성과에 미치는 영향에 대한 기술정책적 과제)

  • Kang, Seok-Min;Kim, Taewoon
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.505-521
    • /
    • 2015
  • Using small and medium sized firms located on 3th seongseo industry complex in Daegu, this study investigated the effects of technology development factors on innovation performance, and suggested the implications in terms of technology policies. Technology development factors are categorized into both fundamental based factors and external cooperation based factors as independent variables. According to the research results, external cooperation based factor positively affects innovation performance, and this positive effect is reported in firms having more than average firm size. Under environment uncertainty, external cooperation based factor plays a key role to increase innovation performance to firms having more than average firm size. Therefore, policy making should be focused on external cooperation, not on fundamental base such as people and infrastructure, and also dissimilar policy suggestion based firm size is needed to be considered.

  • PDF

Position control of an Electro-Hydrostatic Rotary Actuator using adaptive PID control (EHRA의 위치제어를 위한 적응 PID 제어기 설계)

  • Ha, Tae Wook;Jun, Gi Ho;Nguyen, Minh Tri;Han, Sung Min;Shin, Jung Woo;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.37-44
    • /
    • 2017
  • This paper introduces a control algorithm for trajectory control of an electro-hydrostatic rotary actuator. A key feature of this paper is that an adaptive PID based on sliding mode is used to control the nonlinearity and uncertainty factor of single input/output system. Accurate knowledge of rotary actuator angle can result in high-performance and efficiency of electro hydraulic system. First, the position control is formulated using the adaptive PID with sliding mode technique and uncertainties in the hydraulic system. Second, the controller can update the PID gains on-line based on error caused by external disturbance and uncertain factors in the system. Finally, three experimental cases were studied to evaluate the proposed control method.

Comparison study of CPU processing load by I/O processing method through use case analysis (유즈케이스를 통해 분석해 본 I/O 처리방식에 따르는 CPU처리 부하 비교연구)

  • Kim, JaeYoung
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.57-64
    • /
    • 2019
  • Recently, avionics systems are being developed as integrated modular architecture applying the modular integration design of the functional unit to reduce maintenance costs and increase operating performance. Additionally, a partitioning operating system based on virtualization technology was used to process various mission control functions. In virtualization technology, the CPU processing load distribution is a key consideration. Especially, the uncertainty of the I/O processing time is a risk factor in the design of reliable avionics systems. In this paper, we examine the influence of the I/O processing method by comparing and analyzing the CPU processing load by the I/O processing method through use of case analysis and applying it to the example of spatial-temporal partitioning.

The Effect of the CEO's Entrepreneurship on Corporate Performance in the Restaurant Industry

  • Jun-Young Lee;Sung-Ho Bang;Ki-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.168-174
    • /
    • 2023
  • The purpose of this paper is to analyze entrepreneurship and to find out the impact of CEOs in the restaurant industry on corporate performance when they have entrepreneurship. Entrepreneurs need entrepreneurship to take risks and jump into the market to generate profits. Entrepreneurship is not limited to the abilities or resources held, but it is not limited to the ability or resources held, and entrepreneurship to act means the spirit to take uncertainty and preempt opportunities through innovative activities [1]. In this study, the CEO's entrepreneurship was set as an independent variable and corporate performance as a dependent variable. By applying and analyzing how the CEO's entrepreneurship affects corporate performance in the restaurant industry, the importance of entrepreneurship in the restaurant industry and the impact relationship on corporate performance are analyzed. To this end, 100 CEOs working in the restaurant industry will be surveyed using the Likert 5-point scale[2]. And an empirical analysis will be conducted through the SPSS program[3]. Entrepreneurship is a spirit that can take risks and seize opportunities through bold challenges to generate profits. Therefore, it has been confirmed that it affects corporate performance as a key factor for improving corporate performance, and from related studies, the entrepreneurship of the CEO of the restaurant industry is expected to have a positive (+) effect on corporate performance.

Making a Technological Catch-up: Barriers and Opportunities

  • Lee, Keun
    • Journal of Technology Innovation
    • /
    • v.13 no.2
    • /
    • pp.97-131
    • /
    • 2005
  • This paper has discussed several issues regarding the barriers and opportunities for technological catch-up by the late-comer countries and firms. As one of the barriers to technological catch-up, the paper emphasizes the uncertainty involved with the third stage of learning how to design. The barriers arise because as the forerunner firms refuse to sell or give license to successful catching-up firms who thus have to design the product by themselves. The paper discusses how to overcome this barrier. It also notes that if the crisis of design technology is a push factor for leapfrogging, arrival of new techno-economic paradigm can serve as a pull factor for leapfrogging, serving as a winder of opportunity. The, it emphasized the two risks with leapfrogging, namely the risk of choosing right technology or standards and the risk of creating initial markets, and how to overcome these risks. It discusses how to overcome these risks in leapfrogging, and differentiates diverse forms of knowledge accesses. Then, the paper takes up the issue of whether there can be a single common or several models for catch-up. A common element of catching-up is to enter new markets segments quickly, to manufacture with high levels of engineering excellence, and to be first-to-market by means of the best integrative designs. This observation is supported by the fact that Korea and Taiwan has achieved higher levels of technological capabilities in such sectors as featured by short cycle time of technology. The possibility of two alternative models for catch-up is also discussed in terms of the key difference between Korean and Taiwan, especially in the position toward the source of foreign knowledge and the paths taken toward the final goal of OBM. Taiwan followed the sequential steps of OEM, ODM and OBN, in collaboration or integration with the MNCs. Korean chaebols jumped from OEM directly to OBM even without consolidating design technology.

  • PDF

Determination Process of Drift Capacity for Seismic Performance Evaluation of Steel Tall Buildings (초고층 철골 건축물의 내진성능평가를 위한 Drift Capacity 산정 프로세스)

  • Min, Ji Youn;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.481-490
    • /
    • 2006
  • The actual performance of a building during an earthquake depends on many factors. The prediction of the seismic performance of a new or existing structure is complex, due not only to the large number of factors that need to be considered and the complexity of the seismic response, but also due to the large inherent uncertainties and randomness associated with making these predictions. A central issue of this research is the proper treatment and incorporation of these uncertainties and randomness in the evaluation of structural capacity and response has been adopted in the seismic performance evaluation of steel tall buildings to account for the uncertainties and randomness in seismic demand and capacities in a consistent manner. The basic framework for reliability-based seismic performance evaluation and the key factors for statistical studies were summarized. A total of 36 target structures that represent typical tall steel buildings based on national building code (KBC-2005) were designed for the statistical studies of demand factor s and capacity factors. The incremental dynamic analysis (IDA) approach was examined through the simple steel moment frame building in determination of global drift capacity.