• Title/Summary/Keyword: Key Performance Parameter

Search Result 230, Processing Time 0.026 seconds

An Extended Generative Feature Learning Algorithm for Image Recognition

  • Wang, Bin;Li, Chuanjiang;Zhang, Qian;Huang, Jifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3984-4005
    • /
    • 2017
  • Image recognition has become an increasingly important topic for its wide application. It is highly challenging when facing to large-scale database with large variance. The recognition systems rely on a key component, i.e. the low-level feature or the learned mid-level feature. The recognition performance can be potentially improved if the data distribution information is exploited using a more sophisticated way, which usually a function over hidden variable, model parameter and observed data. These methods are called generative score space. In this paper, we propose a discriminative extension for the existing generative score space methods, which exploits class label when deriving score functions for image recognition task. Specifically, we first extend the regular generative models to class conditional models over both observed variable and class label. Then, we derive the mid-level feature mapping from the extended models. At last, the derived feature mapping is embedded into a discriminative classifier for image recognition. The advantages of our proposed approach are two folds. First, the resulted methods take simple and intuitive forms which are weighted versions of existing methods, benefitting from the Bayesian inference of class label. Second, the probabilistic generative modeling allows us to exploit hidden information and is well adapt to data distribution. To validate the effectiveness of the proposed method, we cooperate our discriminative extension with three generative models for image recognition task. The experimental results validate the effectiveness of our proposed approach.

Structural modal identification and MCMC-based model updating by a Bayesian approach

  • Zhang, F.L.;Yang, Y.P.;Ye, X.W.;Yang, J.H.;Han, B.K.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.631-639
    • /
    • 2019
  • Finite element analysis is one of the important methods to study the structural performance. Due to the simplification, discretization and error of structural parameters, numerical model errors always exist. Besides, structural characteristics may also change because of material aging, structural damage, etc., making the initial finite element model cannot simulate the operational response of the structure accurately. Based on Bayesian methods, the initial model can be updated to obtain a more accurate numerical model. This paper presents the work on the field test, modal identification and model updating of a Chinese reinforced concrete pagoda. Based on the ambient vibration test, the acceleration response of the structure under operational environment was collected. The first six translational modes of the structure were identified by the enhanced frequency domain decomposition method. The initial finite element model of the pagoda was established, and the elastic modulus of columns, beams and slabs were selected as model parameters to be updated. Assuming the error between the measured mode and the calculated one follows a Gaussian distribution, the posterior probability density function (PDF) of the parameter to be updated is obtained and the uncertainty is quantitatively evaluated based on the Bayesian statistical theory and the Metropolis-Hastings algorithm, and then the optimal values of model parameters can be obtained. The results show that the difference between the calculated frequency of the finite element model and the measured one is reduced, and the modal correlation of the mode shape is improved. The updated numerical model can be used to evaluate the safety of the structure as a benchmark model for structural health monitoring (SHM).

Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes (금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활)

  • Kim, Dong Geun;Jang, Changhwan;Kim, Seong Jae;Kim, Daegyoum;Kim, Sanha
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

A new method of predicting hotspot stresses for longitudinal attachments with reduced element sensitivities

  • Li, Chun Bao;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.379-395
    • /
    • 2021
  • For the complicated structural details in ships and offshore structures, the traditional hotspot stress approaches are known to be sensitive to the element variables of element topologies, sizes, and integration schemes. This motivated to develop a new approach for predicting reasonable hotspot stresses, which is less sensitive to the element variables and easy to be implemented the real marine structures. The three-point bending tests were conducted for the longitudinal attachments with the round and rectangular weld toes. The tests were reproduced in the numerical simulations using the solid and shell element models, and the simulation technique was validated by comparing the experimental stresses with the simulated ones. This paper considered three hotspot stress approaches: the ESM method based on surface stress extrapolation, the Dong's method based on nodal forces along a weld toe, and the proposed method based on nodal forces perpendicular to an imaginary vertical plane at a weld toe. In order to study the element sensitivities of each method, 16 solid element models and 8 shell element models were generated under the bending and tension loads, respectively. The element sensitivity was analyzed in terms of Stress Concentration Factors (SCFs) in viewpoints of two statistical quantities of mean and bias with respect to the reference SCFs. The average SCFs predicted by the proposed method were remarkably in good agreement with the reference SCFs based on the experiments and the ship rules. Negligibly small Coefficients of Variation (CVs) of the SCFs, which is measure of statistical bias, were drawn by the proposed method.

The Study of Failure Mode Data Development and Feature Parameter's Reliability Verification Using LSTM Algorithm for 2-Stroke Low Speed Engine for Ship's Propulsion (선박 추진용 2행정 저속엔진의 고장모드 데이터 개발 및 LSTM 알고리즘을 활용한 특성인자 신뢰성 검증연구)

  • Jae-Cheul Park;Hyuk-Chan Kwon;Chul-Hwan Kim;Hwa-Sup Jang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.95-109
    • /
    • 2023
  • In the 4th industrial revolution, changes in the technological paradigm have had a direct impact on the maintenance system of ships. The 2-stroke low speed engine system integrates with the core equipment required for propulsive power. The Condition Based Management (CBM) is defined as a technology that predictive maintenance methods in existing calender-based or running time based maintenance systems by monitoring the condition of machinery and diagnosis/prognosis failures. In this study, we have established a framework for CBM technology development on our own, and are engaged in engineering-based failure analysis, data development and management, data feature analysis and pre-processing, and verified the reliability of failure mode DB using LSTM algorithms. We developed various simulated failure mode scenarios for 2-stroke low speed engine and researched to produce data on onshore basis test_beds. The analysis and pre-processing of normal and abnormal status data acquired through failure mode simulation experiment used various Exploratory Data Analysis (EDA) techniques to feature extract not only data on the performance and efficiency of 2-stroke low speed engine but also key feature data using multivariate statistical analysis. In addition, by developing an LSTM classification algorithm, we tried to verify the reliability of various failure mode data with time-series characteristics.

Experimental and analytical study on RC beam reinforced with SFCB of different fiber volume ratios under flexural loading

  • Lin, Jia-Xiang;Cai, Yong-Jian;Yang, Ze-Ming;Xiao, Shu-Hua;Chen, Zhan-Biao;Li, Li-Juan;Guo, Yong-Chang;Wei, Fei-Fei
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.133-145
    • /
    • 2022
  • Steel fiber composite bar (SFCB) is a novel type of reinforcement, which has good ductility and durability performance. Due to the unique pseudo strain hardening tensile behavior of SFCB, different flexural behavior is expected of SFCB reinforced concrete (SFCB-RC) beams from traditional steel bar reinforced concrete (S-RC) beams and FRP bar reinforced concrete (F-RC) beams. To investigate the flexural behavior of SFCB-RC beam, four points bending tests were carried out and different flexural behaviors between S/F/SFCB-RC beams were discussed. An flexural analytical model of SFCB-RC beams is proposed and proved by the current and existing experimental results. Based on the proposed model, the influence of the fiber volume ratio R of the SFCB on the flexural behavior of SFCB-RC beams is discussed. The results show that the proposed model is effective for all S/F/SFCB-RC flexural members. Fiber volume ratio R is a key parameter affecting the flexural behavior of SFCB-RC. By controlling the fiber volume ratio of SFCB reinforcements, the flexural behavior of the SFCB-RC flexural members such as bearing capacity, bending stiffness, ductility and repairability of SFCB-RC structures can be designed.

Analysis on Decryption Failure Probability of TiGER (TiGER의 복호화 실패율 분석)

  • Seungwoo Lee;Jonghyun Kim;Jong Hwan Park
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.157-166
    • /
    • 2024
  • Probability of decryption failure of a public key cryptography based on LWE(learning with errors) is determined by its architecture and parameter settings. Since large decryption failure probability leads to attacks[1] on scheme as well as degradation of performance, TiGER[2], a Ring-LWE(R)-based KEM proposed for the first round of KpqC, tried to reduce the decryption failure probability by using error correction code Xef and D2 encoding method. However, D'Anvers et al. has shown that the commonly assumed independence of each bit error is not established since in the case of an encryption scheme based on Ring-LWE(R) using an error correction code, there is error dependency which is not negligible[3]. In this paper, since TiGER does not consider the error dependency, we calcualte the decryption failure probability of TiGER by considering the error dependency. In addition, we found that the bit error probability is incorrectly calculated in TiGER, so we present the correct calculation.

Categorized VSSLMS Algorithm (Categorized 가변 스텝 사이즈 LMS 알고리즘)

  • Kim, Seon-Ho;Chon, Sang-Bae;Lim, Jun-Seok;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.815-821
    • /
    • 2009
  • Information processing in variable and noisy environments is usually accomplished by means of adaptive filters. Among various adaptive algorithms, Least Mean Square (LMS) has become the most popular for its robustness, good tracking capabilities and simplicity, both in terms of computational load and easiness of implementation. In practical application of the LMS algorithm, the most important key parameter is the Step Size. As is well known, if the Step Size is large, the convergence rate of the algorithm will be rapid, but the steady state mean square error (MSE) will increase. On the other hand, if the Step Size is small, the steady state MSE will be small, but the convergence rate will be slow. Many researches have been proposed to alleviate this drawback by using a variable Step Size. In this paper, a new variable Step Size LMS(VSSLMS) called Categorized VSSLMS (CVSSLMS) is proposed. CVSSLMS updates the Step Size by categorizing the current status of the gradient, hence significantly improves the convergence rate. The performance of the proposed algorithm was verified from the view point of convergence rate, Excessive Mean Square Error(EMSE), and complexity through experiments.

Glucocorticoids improve sperm performance in physiological and pathological conditions: their role in sperm fight/flight response

  • Vittoria Rago;Adele Vivacqua;Saveria Aquila
    • Anatomy and Cell Biology
    • /
    • v.57 no.1
    • /
    • pp.119-128
    • /
    • 2024
  • Glucocorticoids play a physiologic role in the adult male reproductive functions, modulating gonadal steroid synthesis and spermatogenesis, through the glucocorticoid receptor (GR). The expression of GR has been described in several key testicular cell types, including somatic cells and early germ cell populations. Nothing is known on GR in human spermatozoa. Herein, we explored the GR expression and its possible role in normal and testicular varicocele semen samples from volunteer donors. After semen parameter evaluation by macro- and microscopic analysis, samples were centrifuged; then spermatozoa and culture media were recovered for further investigations. By western blotting and immunofluorescence analyses we evidenced for the first time in spermatozoa the presence of GR-D3 isoform which was reduced in sperm from varicocele patients. By treating sperm with the synthetic glucocorticoid dexamethasone (DEXA), we found that survival, motility, capacitation, and acrosome reaction were increased in both healthy and varicocele samples. GR involvement in mediating DEXA effects, was confirmed by using the GR inhibitor mifepristone (M2F). Worthy, we also discovered that sperm secretes different cortisol amounts depending on its physio-pathological status, suggesting a defence mechanism to escape the immune system attach in the female genital tract thus maintaining the immune-privilege as in the testis. Collectively, our data suggests a role for glucocorticoids in determining semen quality and function, as well as in participating on sperm immune defensive mechanisms. The novelty of this study may be beneficial and needs to take into account in artificial insemination/drug discovery aimed to enhancing sperm quality.

Study on load tracking characteristics of closed Brayton conversion liquid metal cooled space nuclear power system

  • Li Ge;Huaqi Li;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1584-1602
    • /
    • 2024
  • It is vital to output the required electrical power following various task requirements when the space reactor power supply is operating in orbit. The dynamic performance of the closed Brayton cycle thermoelectric conversion system is initially studied and analyzed. Based on this, a load tracking power regulation method is developed for the liquid metal cooled space reactor power system, which takes into account the inlet temperature of the lithium on the hot side of the intermediate heat exchanger, the filling quantity of helium and xenon, and the input amount of the heat pipe radiator module. After comparing several methods, a power regulation method with fast response speed and strong system stability is obtained. Under various changes in power output, the dynamic response characteristics of the ultra-small liquid metal lithium-cooled space reactor concept scheme are analyzed. The transient operation process of 70 % load power shows that core power variation is within 30 % and core coolant temperature can operate at the set safety temperature. The second loop's helium-xenon working fluid has a 65K temperature change range and a 25 % filling quantity. The lithium at the radiator loop outlet changes by less than ±7 K, and the system's main key parameters change as expected, indicating safety. The core system uses less power during 30 % load power transient operation. According to the response characteristics of various system parameters, under low power operation conditions, the lithium working fluid temperature of the radiator circuit and the high-temperature heat pipe operation temperature are limiting conditions for low-power operation, and multiple system parameters must be coordinated to ensure that the radiator system does not condense the lithium working fluid and the heat pipe.