• Title/Summary/Keyword: Keratinocyte differentiation

Search Result 46, Processing Time 0.03 seconds

Study on Keratinocyte Differentiation and Skin Barrier Function of Adeonphorae Radix Root Extracts (Adenophorae Radix 뿌리 추출물에 의한 Keratinocyte의 분화 및 피부장벽 기능에 대한 연구)

  • Nam, Gaewon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.329-335
    • /
    • 2017
  • We have studied on the keratinocytes differentiation and skin barrier function using Adenophorae radix (A. radix) root extract, which was known to contain triterpenoid, saponin and starch. A. radix root extracts showed the $PPAR{\alpha}$ expression level of Wy-14,643 $0.5-1.0{\mu}M$ in CV-1 cells. The cornified envelop formation (CE) of human keratinocyte cell line (HaCaT) and normal human keratinocyte (NHK) showed a statistically significant increased compared to the control. When HaCaT cells were treated with A. radix root extract, transglutaminase (TGase-1) was significantly increased. As a result of clinical study of the simple cosmetic formulation containing A. radix root extract for about 2 weeks, TEWL values were significantly decreased and water contents were increased. The ceramides, which were obtained from the inner forearm, were also significantly increased statistically. We suggest that the A. radix root extract can be used as a preventive and therapeutic agent for skin diseases such as dry skin and atopy.

Engineering of a Human Skin Equivalent

  • Ghalbzouri Abdoelwaheb El
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.29 no.2 s.43
    • /
    • pp.105-130
    • /
    • 2003
  • Human skin equivalents, also designated as cultured skin substitute (Boyce and Warden, 2002) or organotypic co-cultures (Maas-Szabowski et al., 1999, 2000, 2003), are three-dimensional systems that are engineered by seeding fibroblasts into a three-dimensional dermal matrix. Such a dermal equivalent is then subsequently seeded with human keratinocytes. After cell attachment, the culture is kept first under submerged condition to allow keratinocyte proliferation. Thereafter, the culture is lifted the air-liquid interface (A/L) to expose the epidermal compartment to the air, and to further induce keratinocyte differentiation. During the air-exposure, nutrients from the medium will diffuse through the underlying dermal substrate towards the epidermal compartment and support keratinocyte proliferation and differentiation. Under these conditions, a HSE is formed that shows high similarity with the native tissue from which it was derived (Figure 1) (Bell et at., 1981; Boyce et al., 1988; Ponec et al., 1997;El Ghalbzouri et al.., 2002).

Phosphatidylserine Enhances Skin Barrier Function Through Keratinocyte Differentiation (포스파티딜세린의 각질세포 분화 유도를 통한 피부장벽 기능 강화)

  • Chung, So-Young;Nam, Sang-June;Choi, Wang-Keun;Seo, Mi-Young;Kim, Jin-Wook;Lee, Seung-Hun;Park, Chang-Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.17-22
    • /
    • 2006
  • Phosphatidyiserine (PS) is a phospholipid which plays the structural role in membranes and serves as a cofactor of signaling enzymes for diverse cellular functions. In this study, we observed that topical treatment with PS significantly decreased trans-epidermal water loss (TEWL) induced by tape-stripping in hairless mice. Also, ceramides in epidermis were increased in PS-treated group compared to vehicle-treated one in vivo. the amounts of non-hydroxyl ceramide (NHCER) (1.4 fold) and glucosylceramide (glucosylCER) (1.6 fold), in the skin of hairless mice, were increased by topical treament with PS. Also, we demonstrated that PS stimulated keratinocyte differentiation. We observed that PS treatment morphologically altered normal human keratinocyte (NHK) from the proliferating phase to the differentiating one, suggesting that PS stimulated epidermal differentiation in NHK. We also showed that the expressions of the specific markers for epidermal differentiation, involucrin (INV) (3.5 fold up) and transglutaminase 1 (TG'ase 1) (3 fold up), were significantly increased by PS treatment, compared to untreated control in vitro. In addition, topical treatment with PS resulted in a progressive increase in INV and loricrin protein levels in vivo. In conclusion, we provide the first evidence for the physiological activities of PS in skin, and we suggest that PS strengthen the epidermal permeability harrier by stimulation of keratinocyte differentiation.

Effects of Keratinocyte Growth Factor on the Uterine Endometrial Epithelial Cells in Pigs

  • Ka, Hak-Hyun;Bazer, Fuller W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1708-1714
    • /
    • 2005
  • Keratinocyte growth factor (KGF) functions in epithelial growth and differentiation in many tissues and organs. KGF is expressed in the uterine endometrial epithelial cells during the estrous cycle and pregnancy in pigs, and receptors for KGF (KGFR) are expressed by conceptus trophectoderm and endometrial epithelia. KGF has been shown to stimulate the proliferation and differentiation of conceptus trophectoderm. However, the role of KGF on the endometrial epithelial cells has not been determined. Therefore, this study determined the effect of KGF on proliferation and differentiation of endometrial epithelial cells in vitro and in vivo using an immortalized porcine luminal epithelial (pLE) cell line and KGF infusion into the uterine lumen of pigs between Days 9 and 12 of estrous cycle. Results showed that KGF did not stimulate proliferation of uterine endometrial epithelial cells in vitro and in vivo determined by the $^3$H]thymidine incorporation assay and the proliferating cell nuclear antigen staining, respectively. Effects of KGF on expression of several markers for epithelial cell differentiation, including integrin receptor subunits $\alpha$4, $\alpha$5 and $\beta$1, plasmin/trypsin inhibitor, uteroferrin and retinol-binding protein were determined by RT-PCR, Northern and slot blot analyses, and immunohistochemisty, and KGF did not affect epithelial cell differentiation in vitro and in vivo. These results show that KGF does not induce epithelial cell proliferation and differentiation, suggesting that KGF produced by endometrial epithelial cells acts on conceptus trophectoderm in a paracrine manner rather than on endometrial epithelial cells in an autocrine manner.

Analysis of ceramide metabolites in differentiating epidermal keratinocytes treated with calcium or vitamin C

  • Kim, Ju-Young;Yun, Hye-Jeong;Cho, Yun-Hi
    • Nutrition Research and Practice
    • /
    • v.5 no.5
    • /
    • pp.396-403
    • /
    • 2011
  • Ceramides (Cer) comprise the major constituent of sphingolipids in the epidermis and are known to play diverse roles in the outermost layers of the skin including water retention and provision of a physical barrier. In addition, they can be hydrolyzed into free sphingoid bases such as $C_{18}$ sphingosine (SO) and $C_{18}$ sphinganine (SA) or can be further metabolized to $C_{18}$ So-1-phosphate (S1P) and $C_{18}$ Sa-1-phosphate (Sa1P) in keratinocytes. The significance of ceramide metabolites emerged from studies reporting altered levels of SO and SA in skin disorders and the role of S1P and Sa1P as signaling lipids. However, the overall metabolism of sphingoid bases and their phosphates during keratinocyte differentiation remains not fully understood. Therefore, in this study, we analyzed these Cer metabolites in the process of keratinocyte differentiation. Three distinct keratinocyte differentiation stages were prepared using 0.07 mM calcium (Ca$^{2+}$) (proliferation stage), 1.2 mM Ca$^{2+}$ (early differentiation stage) in serum-free medium, or serum-containing medium with vitamin C (50 ${\mu}L$/mL) (late differentiation stage). Serum-containing medium was also used to determine whether vitamin C increases the concentrations of sphingoid bases and their phosphates. The production of sphingoid bases and their phosphates after hydrolysis by alkaline phosphatase was determined using high-performance liquid chromatography. Compared to cells treated with 0.07 mM Ca$^{2+}$, levels of SO, SA, S1P, and SA1P were not altered after treatment with 1.2 mM Ca$^{2+}$. However, in keratinocytes cultured in serum-containing medium with vitamin C, levels of SO, SA, S1P, and SA1P were dramatically higher than those in 0.07- and l.2-mM Ca$^{2+}$-treated cells; however, compared to serum-containing medium alone, vitamin C did not significantly enhance their production. Taken together, we demonstrate that late differentiation induced by vitamin C and serum was accompanied by dramatic increases in the concentration of sphingoid bases and their phosphates, although vitamin C alone had no effect on their production.

Betaine Induces Epidermal Differentiation by Enhancement of Autophagy through an mTOR-independent Pathway (Betaine의 mTOR 비의존적 자가포식 작용 촉진에 의한 표피 분화 유도 효과)

  • Choi, Seon-Guk;Kim, Mi-Sun;Kim, Jin-Hyun;Park, Sun Gyoo;Lee, Cheon Koo;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.95-101
    • /
    • 2018
  • The epidermis which is stratified by epithelial tissue renewal based on keratinocyte differentiation protects the organism from various environmental insults by forming a physical barrier. Autophagy is a mechanism which mediates lysosomal delivery and degradation of protein aggregates, damaged organelles and intracellular microorganisms. Recent reports have shown that autophagy has critical roles for proper terminal differentiation to stratum corneum via removing metabolic organelles and nuclei. However, whether increasing autophagy can activate epidermal differentiation is unknown. Here, we screened a library of natural single compounds and discovered that betaine specifically increased the LC3 positive cytosolic punctate vesicles and LC3-I to LC3-II conversion in HaCaT human keratinocyte cell line, indicating increased autophagy flux. mTOR pathway, which negatively regulates autophagy, was not affected by betaine treatment, suggesting betaine-induced autophagy through an mTOR-independent pathway. Betaine-induced autophagy was also observed in primary human keratinocyte and skin equivalent. Furthermore, epidermal thickness was increased in skin equivalent under betaine treatment. Overall, our finding suggests that betaine as a novel regulator of autophagy may induce epidermal turnover and improve the skin barrier abnormality of the aged epidermis.

Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice

  • Jeong, Haengdueng;Lim, Kyung-Min;Goldenring, James R.;Nam, Ki Taek
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.553-561
    • /
    • 2019
  • Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.

Characterization of Korean Cattle Keratin IV Gene

  • Kim, D.Y.;Yu, S.L.;Sang, B.C.;Yu, D.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.7
    • /
    • pp.1055-1059
    • /
    • 2003
  • Keratins, the constituents of epithelial intermediate filaments, are precisely regulated in a tissue and development specific manner. There are two types of keratin in bovine. The type I is acidic keratin and the type II is neutral/basic keratin. 1.5 kb of 5' flanking sequence of Korean cattle Keratin IV gene, type II keratin (59 kDa), was cloned and sequenced. A symmetrical motif AApuCCAAA are located in a defined region upstream of the TATA box. Proximal SP1, AP1, E-box and CACC elements as the major determinants of transcription are identified. When it was compared to the bovine sequence from -600 bp to ATG upstream, the homology was 97% in nucleotide sequence. Several A and T sequences, located in the promoter region, are deleted in the Korean cattle. An expression vector consisted of Korean cattle Keratin IV gene promoter/SV40 large T antigen was transfected to HaCaT cell (Epithelial keratinocyte). The transformed HaCaT cells showed active proliferation when treated with PDGF (Platelet-derived growth factor) in 0.3% soft agar compared to control cells. These results indicate that Korean cattle Keratin IVgene promoter can be used as a promoter for transfection into epithelial cell.

The Convergence Analysis of Microarray-Based Gene Expression by Difference of Culture Environment in Human Oral Epithelial Cells (구강상피세포의 배양환경의 차이에 의한 마이크로어레이 기반 유전자 발현의 융복합 분석)

  • Son, Hwa-Kyung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.81-89
    • /
    • 2019
  • This study was analyzed about the relationship between culture microenvironment and cell differentiation of HPV 16 E6/E7-transfected immortalized oral keratinocyte(IHOK). By the alteration of culture environment, IHOK-EF and IHOK-EFKGM were obtained, and the modulation of cell properties was observed by cell proliferation assay, immunofluorescence, microarray, and quantitative real-time PCR analysis. IHOK-EF losed the properties of epithelial cells and obtained the properties of mesenchymal cells, and in the result of microarray analysis, genes related to the inhibition of differentiation such as IL6, TWIST1, and ID2 were highly expressed in IHOK-EF. When the culture environment was recovered to initial environment, these changes were recovered partially, presenting the return of genes involved in the inhibition of differentiation such as IL6, and ID2, particularly. This study will contribute to understand adjustment aspect for cell surviving according to the change of culture microenvironment in the study for determining the cell characteristic, and facilitate therapeutic approach for human disease by applying surviving study according to the change of cancer microenvironment.

Effects of Eucommia ulmoides Oliver Extract on Inhibition of β-hexosaminidase and Keratinocyte Differentiation (β-hexosaminidase 분비 억제 및 각질형성세포 분화에 대한 두충(Eucommia ulmoides Oliver) 추출물의 효과)

  • Hong, In Kee;Kim, Eun Ji;Seok, Ji Hyun;Kim, Bo Hyeon;Jang, Jin Dong;Joe, Gi Jung;Choi, Shin Wook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • In this study, Eucommia ulmoides Oliver extracts was studied in order to see any effects on the ${\beta}$-hexosaminidase release suppression of RBL-2H3 cells and on the expression of filaggrin, transglutaminase-1 (TGase-1) and cornified cell envelope (CE) related to the recovery of HaCaT keratinocyte skin barrier. Results showed that Eucommia ulmoides Oliver extracts reduced ${\beta}$-hexosaminidase release in RBL-2H3 cells and increased the effects of Eucommia ulmoides Oliver extract on the expression of filaggrin, transglutaminase-1 (TGase-1) and cornified cell envelope (CE) in HaCaT keratinocytes. Taken together, these results suggested that Eucommia ulmoides Oliver extract may be applicable for keratinocyte differentiation.