• Title/Summary/Keyword: Kepler Law

Search Result 5, Processing Time 0.017 seconds

Development and Application of Learning Materials for the Law of Planetary Motion using the Kepler's Abductive Reasoning (행성운동법칙에 관한 케플러의 귀추적 사고를 도입한 학습자료의 개발 및 적용)

  • Park, Su-Gyeong
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.170-182
    • /
    • 2012
  • The purpose of this study was to develop learning materials based on the Kepler's abductive reasoning and to identify high school students' rule-inferring strategies on the law of planetary motion. The learning materials including the concepts of solar magnetic field, conservation of figure skater's angular momentum and Kepler's polyhedral theory were developed and the questions about Kepler's 2nd and 3rd law of planetary motion were also created. The participants were 79science high school students and 83general high school students. The patterns and properties of their abductive inference were analyzed. The findings revealed that the students showed 'incomplete analogy abduction', 'analogy abduction' and 'reconstruction' to generate the hypotheses concerning the Mars' motion related to the solar magnetic field. There were more general high school students who showed the incomplete analogy abduction than science high school students. On the other hand, there were more science high school students who showed the analogy abduction and reconstruction strategy than general high school students. Also, they showed 'incomplete analogy abduction', 'analogy abduction' and 'model construction and manipulation' to generate the hypotheses concerning Kepler's second law. A number of general high school students showed the incomplete analogy. It is suggested that because the analogy of figure skater cause the students' alternative framework to use, more detailed demonstration is necessary in class. In addition, students combined Kepler's polyhedral theory with their prior knowledge to infer Kepler's third law.

Laser Ablation : Fundamentals and applications in Micropatterning and Thin Film Formation

  • J. Heitz;D. Bauerle;E. Arenholz;N. Arnold;J.T. Dickinson
    • Journal of Photoscience
    • /
    • v.6 no.3
    • /
    • pp.103-108
    • /
    • 1999
  • We present recent results on ablation mechanism, single-pulse laser micropatterning , pulsed-laser deposition(PLD) and particulates formation accompanying laser ablation, with special emplasis on polymers, in particular polymide, (PI), and polytetrafluoroethylene, (PTFE). Ablation of polymers is described on the basis of photothermal bond breaking within the bulk material. Here, we assume a first order chemical reaction, which can be described by an Arrhenius law. Ablation starts when the density of broken bonds at the surface reaches a certain critical value. Single-pulse laser ablation of polyimide shows a clear-length dependence of the threshold fluence. This experimental result strongly supports a thermal ablation model. We discuss the various possibilities and drawbacks of PLD and describe the morphology, physical properties and applications of PTFE films.

  • PDF

A Precise Trajectory Prediction Method for Target Designation Based on Cueing Data in Lower Tier Missile Defense Systems (큐잉 데이터 기반 하층방어 요격체계의 초고속 표적 탐지 방향 지정을 위한 정밀 궤적예측 기법)

  • Lee, Dong-Gwan;Cho, Kil-Seok;Shin, Jin-Hwa;Kim, Ji-Eun;Kwon, Jae-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.523-536
    • /
    • 2013
  • A recent air defense missile system is required to have a capability to intercept short-range super-high speed targets such as tactical ballistic missile(TBMs) by performing engagement control efficiently. Since flight time and distance of TBM are very short, the missile defense system should be ready to engage a TBM as soon as it takes an indication of the TBM launch. As a result, it has to predict TBM trajectory accurately with cueing information received from an early warning system, and designate search direction and volume for own radar to detect/track TBM as fast as it can, and also generate necessary engagement information. In addition, it is needed to engage TBM accurately via transmitting tracked TBM position and velocity data to the corresponding intercept missiles. In this paper, we proposed a method to estimate TBM trajectory based on the Kepler's law for the missile system to detect and track TBM using the cueing information received before the TBM arrives the apogee of the ballistic trajectory, and analyzed the bias of prediction error in terms of the transmission period of cueing data between the missile system and the early warning system.

Detailed Re-derivation of Keplerian Orbit and Kaula's Satellite Orbit Perturbation Theory (케플러궤도운동과 카울라의 인공위성궤도 섭동이론의 상세한 재유도)

  • Na, Sung-Ho;Bae, Tae-Seok;Jo, Jung-Hyun;Park, Jong-Uk
    • Journal of the Korean earth science society
    • /
    • v.33 no.1
    • /
    • pp.11-31
    • /
    • 2012
  • Kaula's theory of satellite orbit and Kepler's law are re-visited. All the mathematical steps of derivation are thoroughly shown including the ones, which had been omitted in Kaula's original publication. Particularly in evaluations of the 15 independent Lagrange brackets, simplicity and clarity are attained by using orthogonal property of transformation matrix. Explanations of important physical concepts are included as well in the midway of derivation. One conceptual blunder of Kaula's is corrected.

Newton's Huristics of the Discovery of Dynamics - Transformation and Synthesis (뉴턴의 발견법 - 변형재구성)

  • Park, Mi-Ra;Yang, Kyoung-Eun
    • Journal of Korean Philosophical Society
    • /
    • v.148
    • /
    • pp.157-181
    • /
    • 2018
  • The aim of this essay is to identify elements of methodologies to investigate the development of Newtonian dynamics. This methodology involves the transformation and synthesis of preceding theories. My essay attempts to confirm my assertion by analyzing historical case of Newton's discovery of his dynamics. While discovering his mechanistic theory, Newton reconstructed theoretical concepts and structures of intellectual predecessors, such as Aristotle, Descartes, Galileo, and Kepler. Newton's synthesis was possible only after carefully reconstructing the appropriate and useful ideas of previous natural philosophers' ideas. As a result, Newtonian dynamics are completed with these modified and integrated concepts incorporated into Newton's law of motion and space-time concepts. This study consists of two parts. First, Lakatos' research program has been applied in order to analyze the structure of Newtonian dynamics. Second, the aforementioned methodologies of discovery are distilled from the case study.