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Abstract: Kaula’s theory of satellite orbit and Kepler’s law are re-visited. All the mathematical steps of derivation are
thoroughly shown including the ones, which had been omitted in Kaula’s original publication. Particularly in evaluations
of the 15 independent Lagrange brackets, simplicity and clarity are attained by using orthogonal property of transformation
matrix. Explanations of important physical concepts are included as well in the midway of derivation. One conceptual

blunder of Kaula’s is corrected.
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Introduction

Since the first artificial satellite in 1957, more than
five thousand satellites were launched and have been
used for various purposes including telecommunication,
Earth observation, and positioning. Perhaps the most
successful ones are NAVSTAR satellites composing
Global Positioning System, which is widely used over
the world.

Motion of satellite can be roughly approximated as
a central force problem. And shape of its approximate
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orbit is an ellipse, that is determined by its energy and
angular momentum. Planetary motions around the sun
are also the same kind of elliptical orbits, and Kepler
summarized their characteristics into his famous three
laws. The great triumph of Newton was to deduce his
universal law of gravitation from investigation of
Keplerian orbit. Further enhancement of planetary
orbital theory needs consideration of other nearby
planets, and can be achieved by perturbation scheme.
Satellite orbits are incessantly altered by several
causes. Often numerical integrations are preferred to
acquire precise orbit information for both planets and
satellites. Set of Keplerian elements are relevant to
represent planetary and satellite orbits (Table 1), and
further minute deviations in the orbits can be
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Table 1. Six Keplerian elements and their symbols

Keplerian element Symbol

semi-major axis

eccentricity

inclination

right ascension of ascending node
argument of perigee

mean anomaly

TR~ o~

described by changes in the Keplerian elements.

The size and shape of an ellipse are determined by
its semi-major axis and eccentricity, while the
orientation of orbital plane is determined by the three
angles - inclination, right ascension, and argument of
perigee. Anomaly angle specifies the position of
satellite on the ellipse. Satellite orbital geometry is
illustrated with Keplerian elements in Fig. 1 and Fig.
2. If the Earth was of complete spherical symmetry,
Earth’s gravity would not cause any changes in the
satellites orbital geometry. But the deviation of the
Earth’s gravity field from a purely central field causes
slow but incessant changes in the satellite orbits. The
dominant one of these changes is the westward/eastward
drift of satellite orbits due to Earth’s oblateness. Also
there exist other causes of satellite orbit changes, such
as gravitational pull by the Sun and the Moon, solar
radiation pressure, and atmospheric drag, etc.

Kaula deduced the time rates of change in satellite’s
Keplerian elements as combinations of partial derivatives
of the non-central potential in terms of Keplerian
elements by using Lagrange brackets (Kaula, 1966).
There were comparable studies prior to Kaula’s work
(Brouwer and Clemence, 1961, and Danby, 1962), but
Kaula’s formulation based on the choice of six
variable including mean anomaly led lucidity and
usefulness. Therefore his work has been regarded as
standard treatment in the satellite orbit theory.
Although his descriptions were accurate and almost
immaculate, many of intermediate steps were omitted,
for example, derivations for the Lagrange brackets

and partial derivatives % or ox;

were not explicitly
9k dx

shown. In this article, we revisit Kepler’s laws and
Kaula’s satellite orbit theory, and renew them with full

4

Fig. 1. Orbital size and shape of satellite motion: semi-
major axis a, and eccentricity £ are defined as shown in the
figure. Focus is apart from the center by ae. The origin of
coordinate system (g1, g2, ¢3) is O. It is the center of mass
of the two bodies, and coincide with the center of the Earth
in practice. True anomaly v refers to the position angle of
satellite from perigee. Planetary motion can be described
similarly.

X3

N4
of® \, Perigee

ascending node

Fig. 2. Orientation of the satellite orbital plane: x; axis is
toward the vernal equinox and x; axis is toward the north
pole (conventional international origin). Inclination i is the
angle between the equatorial plane and the orbital plane.
Right ascension (2 is the angle between the ascending node
and x; axis. Argument of perigee @ is the angle between the
ascending node and the perigee. Planetary motion can be
described similarly in the heliocentric coordinate system.

description of each derivation steps. Unlike Kaula, for
evaluations of Lagrange brackets, direct and lengthy
algebra is avoided, but the orthogonal property of
transformation matrix is utilized.
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Keplerian Motion

By analyzing the observations of planetary motions
by Tycho Brahe (1546-1601), Johannes Kepler (1571-
1630) found his famous three laws as follows: (1)
planetary orbits are ellipses having the sun on the
focus, (2) each radius vector to a planet sweeps same
area during any given same time interval, and (3) the
square of each orbital period is proportional to the
cube of each orbital semi-major axis. Issac Newton
(1642-1727) found that three Kepler’s laws could be
derived from one fundamental law - ‘the universal law
of gravitation.” And his inverse square force law for
gravity is still in use at various astronomical,
astronautical and geophysical studies, even though
Newton’s law was surpassed by more fundamental
law of general relativity after Albert Einstein (1879-
1955). Kepler laws are treated as one of standard
materials in classical/celestial mechanics, and a brief
but self consistent description is given here.

Newton’s law of gravitation is expressed as

> A
fir =G5 7, 2-1)
‘Vl—rz‘

>

where fi, is the gravitational force acting on particle

1 by particle 2, G is the constant of gravitation, »; and
) > > »

m, are the particle masses, 7 and r, are positions,

. ) > > ;1_;2
and 7 is the unit vector of ri—r2, ie. r=s—=
ri—r)

As for conservative force like gravity, which can be
expressed as gradient of a potential, it is more
convenient to use the potential in most formulations
rather than the force itself. The equations of motion
for two bodies forcing each other through a gravity
potential J( ;1—;2 )=W(r) can be written as follows.

4 - > > k4 - > >
mry=-V, V(‘rl—r2|) =—myry =+ %V(’rl—rz

) b
(2-2)

=2 . . .
where l7l->refers to ‘gradient operation with respect to
position r;. We take the sign convention for the

potential as expressed by Eq. (2-2) to maintain the

equation of mechanical energy conservation as its
original definition. I_t)" we rewrite the equation of
motion in terms of R, which is the center of mass,

> > > ) . )
and r=r—r,, then we attain alternative expression

as follows.
¢ 5 o
(m1+m2)R:05 ,ur=—|71V(r), (2'3)
. mym,
where reduced mass is defined as 4= ———=. Then
m; + n,

the problem of two bodies under gravitational attraction
is converted to one body central force problem.

. > . >
;
yr=—Gm1m2£§ = r=-G(m +m2)£§ (2-4)

Polar coordinates » and ¢ are the relevant coordinates
for central force problem. Polar coordinates and cartesian
coordinates are related through the following relation.

X=rcos ¢, y=rsin ¢ (2-5)

Since no torque is exerted by central force,
conservation of angular momentum evidently holds.

> > .. .
I=L.=(rxp).=xp,—yp. = u(xy—y%) = ur'$
= constant (2-6)

The 2nd law of Kepler is attained accordingly.

_1 dA_1 24 | _
dA ir(m’¢) = T §r¢ oy constant(2 )

Another constant of central force motion is the total
energy F, which is sum of the kinetic energy 7 and
the potential energy V' (We reserve the symbol £ to
represent the eccentric anomaly).

F=T+V = Ju(i*+ 7 §) - GIL%
r
2 .2 _
= %u(r )=y (2-8)

where y is defined as y= G(m,+m,) . For planets in
the solar system, u is close to the mass of each
planet, but deviates in the same order of ‘mass ratio’
between the planet and the sun. For a satellite in the
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Earth’s gravity field, x is given as the mass of the
satellite itself (practically negligible difference).

It is convenient to use effective potential V5, which
is defined as

1.1 .2 - 12
Vor) =—yur ! +_,ur2¢ =—yur 'y s (29)
2 2ur

Then we have useful expression for time rate of
radius from Eq. (2-8) as follows.

d
T /-(F Ver)

And from the definition of angular momentum, /=

(2-10)

,urzifﬁ, we have the following relations.
d¢=_’.5dt=_’_2x_.§._i.‘l’£_._ @-11)
N )
P ff
P~ = (2-12)
A/_ll J’” «/F Ve
With a new variable = % Eq. (2-12) can be
rewritten as
dr du
¢ = ==
«/_,UJ JF=Vy JJ%+2ﬂ2W_u2
r r
(2-13)

Integration of Eq. (2-13) leads to the following
(Gradshteyn and Ryzhik, 1965).

2 2

(2-14)

Rearranging terms, we find one of conic sections.

%= Cl1+ gcos(d—do)], (2-153)
where C and ¢ are defined as
2 2
c=H1 o= 1+ZL (2-15b)

So the Kepler’s 1st law is verified. For Keplerian
motion, the eccentricity ¢ has its value between 0 and
1. In alternative expression, Eq. (2-15a) can be
rewritten as follows.

x"?
X y_z =1, (2-16a)
a b
where we define g and b as
2
—, b=aJl-¢ (2-16b)

-9

Using Eq. (2-6) and total area of ellipse 4, we find
the period of Keplerian orbital motion as follows.

= A _ 271//‘z
dA/dt v’

where A is given as

2 3
A=rnab=rna’J1-& = na’ 2““@]2 - Zlﬁ
Hy HNTY

In fact, Kepler’s 3rd law is an approximate expression
of Eq. (2-17).
We hereby add a wuseful relation among true

@-17)

anomaly v, eccentric anomaly E, and mean anomaly
M. By differentiating Eq. (2-15), we have

dr
&~ P Cesinv

= (2-18a)

Using the definition of C in Eq. (2-16b), we find
following relation

2
dr _ d( l/r)(_rz) =—’Cesinv=

sinv
dv  dv a(1-¢)

(2-18b)
We can write the following relations (Fig. 1).

q,=x'-ae=acosE—-ac,

¢>=) = bsinE = a,/1-£sinE (2-19)
Accordingly we have
r=Jq:+q = a(1-ecosE) (2-20)
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Differentiating Eq. (2-20), we have

ﬂ = aesink

- 2-21)

From Egs. (2-18b) and (2-21), we find the following
relation.

2

a 2)sinvdv=agsir1EdE
a(l—-¢

After replacement of dv by using the definition of
angular momentum as dv= %dt and use of another

ur
equality rsinv=g,, we find the following.

2 2
di=9HN1-¢€ Vll‘g (1-gcosE)dE = ﬁd&

which leads to
> i 2
t—ty = ‘#(E—gsinE) = rlz(E_ &sink),
(2-22a)

where £, is perigee passing epoch and mean angular
velocity n is defined as

n=—t =227 (2-22b)
aufl-¢ Na T
After defining mean anomaly as
M=E—¢sinkE , (2-23a)
we can simply rewrite Eq. (2-22a) as
n(t—ty) =M (2-23b)

To calculate the position on the orbital ellipse, we
first calculate mean anomaly for given epoch using
Eq. (2-23b). Next we acquire eccentric anomaly
through iterations or series expression based on the
relation (2-23a). With known E, Egs. (2-19) yield the
position. Components of orbital velocity are expressed
as time derivatives of position coordinates.

(2-24)

g, = —asinEi,—f, g>»=axl —gzcosE%

, Where % is readily acquired from Eq. (2-22a) as

d_E _ n
dt 1-egcosE

Transformation from g¢-coordinates in the orbital
plane to the inertial coordinate (xi, x>, x3) can be done
by multiplying three rotation matrices in series.

X1 q:
X2 | = R3(—.Q)R1(—i)R3(—a))(q2j > (2-25)
0

cos@ sind 0
where R3(9)=(—sin6' cosd Oj and
0 0 1

1 0 0
RI(H):{O cos@ sinfj.

0—siné& cos

Components of velocity are transformed in the same
way as Eq. (2-29).

A few supplementary formulae are given below.
Although these relations were not needed in the
former derivations up to Eq. (2-24), they have
fundamental meaning and convenient usage. We may
equate kinetic energy directly from its definition as
1
2
compose part of total energy with potential energy V.

U=(di+d) = U= ;/G—%)

B O 7y /
+V=pyp =1
T FHU =% 5 total Energy

T= ,uuz=%,u(cﬁ+cﬁ). And the Kkinetic energy

(2-26)

And, from Eq. (2-19), we find a relation between true
anomaly v and eccentric anomaly E.

1-&sinE

tany=
cosE—¢

(227
There are other methods to deduce the Kepler’s law
from the Newton’s law of gravitation than the one of
this section. Two of them are given in Appendix.
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Equation of satellite motion under non-central potential:
Kaula’s theory

Kaula gave expressions for the time rate of Keplerian elements of satellite orbit in non-central gravitational field.
His formulation is extremely neat and almost free from defects (containing only one minor conceptual mistake and
one typographical error). In this section, we faithfully follow his derivations with one minor correction and the
steps which had been omitted in Kaula’s (Kaula, 1966). Our notations are same as the ones of Kaula except the
potential energy and the total energy. s

Newtonian equation of motion for satellite is given as mr——\71V(r) From now on, we take the mass of
satellite m as unity and the potential defined accordingly. Then the i-th component of equation of motion becomes

d
dt

d%,_ oV

(mi)=S =22 (3-1)

We want to represent the equation of motion in terms of Keplerian orbital elements s a, & i, @, 2 M. Also we
want to know the time derivatives of Keplerian orbital elements To this end, we first rewrite time derivative

dx Ox; dsk

of position as x; = — = zas oxidsy zaVask
/(

. Similarly we rewrite Oﬁ' = z G5 d 35,0,

Then Eq. (3-1) can be rewritten as the following.

dxl_ Ox;dsy _ oVosy
2 2
Zask ar Zaskax, (3-2)

Now multiply —g—? to Eq. (3-2) and sum it over index i, then we have
!

5x, 5xdsk:_3 8x, -
Zas,Zask @ Zas (3-3a)

Also multiplying gx, to Eq. (3-2) and summing them over index 7, then we have
Ay

Ox;dsy _ ~0x;0V
! 3-3b
z@slzﬁsk dt zaslﬁx (3-30)
By adding Egs. (3-3a) and (3-3b) we have
Ox;0x; _Ox; 6X)d5k 0x; ox;0V
7 B et Ix 3-3
ZZ(ﬁs,ask 0s,0s)/ dt zas, zas,ax (3-3)
’ d
The left hand side of Eq. (3-3) can be rewritten as Z[sl,sk]gstl‘ , Where Lagrange bracket [s;,s;] is defined as
k=1

3 . .
_ axlaxl_ax[axl)
[s,84] lz;(a—sla—sk a_sla_sk

Also the right hand side of Eq. (3-3) can be rewritten as
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8x, ox;0V _ ) (1 2 ) F
_ V]==—(total E =35

zasz Z@s Ox; 25s( )= 8s1 Os; > ( otal Energy) = 5,

where F is defined as the total energy as F=T+ V. So Eq. (3-3) is rewritten as

dSk__QE -
z[slask dt asl (3 3)

The extraordinary usefulness of Lagrange bracket is its time invariance. Lagrange bracket and Poisson bracket
are two sets of canonical invariant, ie. constant under canonical transformation, and they compose an inverse
relation. In fact Sterne derived the equivalent formulae for satellite motion by using Poisson bracket (Sterne, 1960),
and his derivation is briefly described in Appendix. The time invariance of Lagrange bracket can be explicitly
shown as follows.

Consider time derivative of Lagrange bracket as

0 _ O°X; 0x; | Ox; &'x; 9%, Ox; 6x16x)
il = Z(azaslask 5,010s, 010,05, 03,0105,

2 .
By manipulation on the right hand side of this relation - adding and deducting two terms % 8(3 g;
199k
8(3 gs % etc, we have the time derivative of Lagrange bracket as follows.
1Y%k
g5 =23 (ag_é_@_)_a_z@_@_@_@_)
01" 354\ ds, 0si o1/ 35, &\t ds, 05,0t
0 ( Ox;_ 0% ) 0 ( Ox;_ 0% )
aSl ask askx 5skz 55‘, aS]x
ox; 8x8V) 0 < (-_8xl axav)
8sl (x T, Bow) Bw 2N s, B
_oarn o AT+V) g (3-4)

5S, 8sk 5Sk 8S1

where two relations,

6xl _or
8sk 8sk(22 ) Zx, and % 0x;

have been used in later step. Here, Kaula had made a blunder to specify V' as purely of degree 1 potential.

To solve Eq. (3-3) for the time derivatives of Keplerian orbital elements of satellite; D5k we need to know the
whole set of Lagrange brackets [s;,s,]. Total number of Lagrange brackets for set of six variables are 36, but the
number of independent Lagrange brackets are 15, because of their antisymmetry; [s,s,]=—[s;,s;]. Since
Lagrange brackets are time invariant, they can be evaluated at any convenient point, such as perigee. Followings
are derivations of those 15 independent Lagrange brackets.

3 . .

0x,;0x; Ox;0x; . .. ..
To evaluate Lagrange bracket [s;,s,]= (—’—’——’—’), we need to know the partial derivatives of position
gr g [ ! k] ; 8S18Sk 8S18Sk p p

and velocity with respect to the orbital elements sy, ie. ?ﬁ and gx, Let us go back to Egs. (2-24), (2-25), and
their associates. Sk Sk



18 Sung-Ho Na, Tae-Seok Bae, Jung Hyun Jo, and Jong-Uk Park

X1 q1 X1 ‘jl
X | = R(QR ((-D)R:(-0)| q2 |5 | %, | = Rs(—R\(-)R5(-w)| 4,
\x E X3 qs
q: a(cosE—¢) Q1 —sinE

.l m
92|~ aA/1—£2sinE > | g2 _ﬁ; A/1—$2cosE
q 0 g3 0

For brevity the transformation matrix R;(—2)R,(—i)R;(—w) is replaced by X(,i, ).

cos{2 cosw—sing2 cosi sinw, —cos{2 sinw—sind2 cosi cosw, sSing? sini]
i (3-5)

X(92,i,w)= (sin[} cosm+cos{2 cosi sinw, —sing2 sinw+cos{2 cosi cos®, —cosL2 sin
sini sinw, sini cosw, cosi

3 3
Then x;= ZX,-qu and x;= ZX,kcjk. Here we review a property of the transformation matrix X(£2,i, @)=
k=1 k=1

R3(—Q)R,(—i)R;(—w) . Like other rotational transformation matrix, X(£2,7, @) belongs to the group of orthogonal

matrices. So the transpose of X is its inverse, ie. X' =X ', or equivalently X’X'=1. In other words, the property
ZX;(X,(E ZX,(,X,CE 0y claims that the column vectors of are orthonormal to each other. Similarly the row
T %

vectors of X are also orthonormal to each other.

XX'=1 = S XpXy=YXuXy=0;
k k

Now coordinate transforms of position and velocity are rewritten as follows.

X1 a9 X1 Xy Xis|( a(cosE—eg)
X | =X(25L0) g | =| Xo Xn X aJ1-&sinE (3-62)
X3/ gy Xz Xz X/ 0
)él q‘l Xll X]2 X13 —SlIlE
% | =X(2L0) §,|=| X Xn X T:'&Q(EE J1-&cosE (3-6b)
X3 qs X5 X5 Xa/ 0
Th . .o Ox; Ox; Ox; . . . .
e partial derivatives =——, ==, and == at perigee are acquired accordingly as the followings.
00" 0Oi ow

X1 X X X5 a(l—g) P X

30" :5‘" Xo1 Xyy X3 0 :5"‘ X ja(1-¢)
31 X}Z X3 O 31

—sin{2 cosw—cosL2 cosi Ssinw —X5;
=| cos cosw—sin cosi sinw |a(l1-&)=| X, |a(1-¢) (3-7a)
0 0
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X X X Xiz)ra(1-¢) X
0 _0 _0 1—
3 X3 T Xy Xy Xo3 0 T X5, la(1-¢)
31 X32 X? O 31
sing2 sini sin® Xis
=(—cos_Q sini sinwja(l—8)= Xos |sinw a(l-¢) (3-7b)
cosi sinw f
5 X Xi X Xiz)ra(1-¢) 5 X
3l 2 :%Xn Xy X3 0 :%Xn a(l-¢)
31 X32 X3 0 31
—c0s{2 sinw—sin{2 cosi cosw X
=|—sin2 sinw+cos2 cosi cosw|a(l—¢&)=|X,,|a(l-¢) (3-7¢)
sini cos® g%

Evaluation of %J-C-’ takes a little more attention, because %E is needed as follows.
a a

P X1 X X Xis q1
a X | T | Xy Xoo Xos 3a q>
51 X X 0
We have
0q: _ 0 _ o - OF
Er a—a[a(cosE g)] =cosE-¢& asmEa—a,and

%%2 = —a-[aA/ 1-&sinE] = aj1-&sinE+all —8zcosEQE

oa oa
oE .
To calculate 3 we can use the relation
a

E—gsinE=M= n(t—t0)+M0 .

where n = J% (Egs. (2-22) and (2-23)).
After differentiation on this relation with respect to semi-major axis a, we have

3(M—-M,)

OF 5E on 3n _ _ M,
E (t tO) __a(t_t())_ 2a 2a )

=——&COS

Oa

where M, is defined as M, = M(t,)—M, with perigee passing time #. Since M; is nothing but an arbitrary integral
multiple of 27, M, do not exist in expressions of Lagrange brackets or equation of motion for satellite. At perigee
we have following equalities as

OE _ —3M, 0q,_ g _ Z0E_ 3 [1te
da 3a(i=9’ da % da Wl-fg T3 T M

Then, at perigee, we have g_x, as follows.
a
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P X1 X X X5 q1 X X 3 M+e
3al =Xy X Xos 3a\ 22 =1 Xy |[(1-8)+| Xy (_j = Ml) (3-7d)
51 X X 0 31 32

842

To evaluate -af- we need to know %g-' and 30 . After differentiating the relation; E—egsinE =M, we find
£

the following.

oE OE _ oM _
P SinE— gcosE— ==~ 37 0

Then we find that %g vanishes at perigee.
As results, we find the followings.

(2-6-]-1: 0 _ _ 0q,
P éz[a(cosE &)]=>—-a and '5'5:}0

Accordingly, at perigee, we have
P X1 Xn X Xis P q1 X
3472 Xo1 X X3 FEC X1 |(=a) (3-7e)
31 X32 X}“ 0 31
Again from the relation; F—esinE = M, at perigee, we find the followings.

oF OE _ OE _ 1
3 gcosEm 1, and 3 —

Then, at perigee, we have

01 _ M[a(cosE o] ——asmEg-M:O and

oM 3
oq> _ 2 [ 2o OF 1+e
EIY4 aM[a 1-¢&sinE]=ai1- gcosEmza T

Therefore, at perigee, we find the following.

0
X1 Xll Xl2 Xl3 (]1 Xll XIZ Xl3 XIZ
O nl=x0 X X =1 Xy Xor Xos || @ [LEE|=| X |0 [22E (3-7)
am 2 21 An Az |3 4o 2 An Ax\a 37— BN e -
3 3 X X; 0 5 X X 0 32

Evaluation of ox; at perigee can be done similarly. After then, the values of three partial derivatives % f)ax,
S
g");'; and at perlgee can be acquired readily as follows.

X X X Xis)(@ X X X —sinE

Gl ’ na

30 X2 | = 30 Xy Xoy Xos|| qn| T 30 Xo1 Xoy X T 2cosE J1-&cosE
X3 5 X X 3 51 X X 0
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0

X X Xi3 Xy
=21 X,) X Xos | na |25 =2 x, |na €
D 21 A2 A3 a 1_ P 22 1—¢
51 X5 X3 0 32

[sin!) sin@—cos{2 cosi cosa)J

1+e o l+e
=|—cos sinw-sin{2 cosi cosw |na [— =| X, |na |T— (3-8a)
l-¢ 0 l-¢

0

X1 X sin sini cosa) X3
2. X =Q. Xy, |na Ite_ —cos(2 sini cosa) na =|X,; |cOsS® na 1te (3-8b)
0™ oi l-¢ 1-¢

X3 3 cosi cos®

X X a ' i si X,
5 .1 0 X12 - e cgsg cosa)—smg cosz‘ s?na) o lig:_X” o e 50
3012 | T 3 X2 =% |—sin cosa).—cfos. cosi sinw % 1 %

%3 3 —sini sin® o

Evaluation of partial derivatives Q-)-C-", -8-)3", and oxi need a little more cares. As for Q-)-C-", and we can write
Oa’ O¢ oM Ooa

351 Xll X12 Xlg ql

a| .
% X2 XZI X22 X23 a_ qz
Xy 3 X X; qs
Then we calculate QP_I_:
Oa
—sinE
5 a1 5 —sinE 5 : —sinE oF 6 1—ecosE
.l na n
32| 92|~ 3| T=zcosE| /1~ cosE _(8 a+n)l—scosE J1-&cosE | TMazmap J1- £ cosE
qs 0 0 1—ecosE
0
on OF . .
Er and 5 were already found above, during the derivation of Eq. (3-7d), as
on_ 3n 4 OE___3M,
oa 2a oa 2(1-¢&)a
And so, at perigee (E=0), we have
¢ Xy X X ; X X X
83?1_ 1 A2 A3 aq'l 1n A A3 n 1+ 3nM1
8_51 X2l ™ X21 Xzz X23 3_ qz le Xzz X23 2(1 g)
X3 NG X3 X 51 X X
Xlz _n(lte 3nM
- |23 j nih ) (-5)
X, 2(1 &)’

. ok

— can be done as follows.
o€

Evaluation o
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5 X1 X X Xi3 q X X Xi3 —sinf
- - na
34 x| Xy Xy Xos 34| Xy Xy Xo3 34 T—zcosE J1-&cosE
X3 51 X X g 31 X3 X 0
—sinE
Xll XIZ Xl3 XlZ
—&(1— E
=Xy Xy X | aCOSE |2 ] 208 1 1= PeosE| = x| — 19 (3-8¢)
L Xa Xas (1—&sinE) 1-¢ . (1 g) /1 =
To evaluate 8_3&1-’ we need to know 41 and % And, at perigee, we find
oM oM oM
dq1_ 0 sinE ) OE 5( —sinE ) na
> = ,
oM oM\ T—gcosE) " aMAE\T—gcosE (1-¢g)
0g>_ 0 [, nN1=¢ cosE) naJ1—#9E 0 ( cosE ):0
oM 6 1—&cosE OMOE\1—¢ecosE
So, at perigee, we have
. . _ha__
P X1 X Xip Xi3 q1 X Xy Xis (1 g) na
M X2 | T X Ko X B, G2 |7 X X X 0 X ( (- g)) (3-8f)
Xy 51 X X qs 51 X X 0 31

g:g;z g);j/g.):k) We can calculate them by using Egs.

(3-7a~f) and Egs. (3-8a~f). The orthonormality between column vectors of the transformation matrix X(£2 i, w)=
Ri(—=Q)R5(—i)Rs(—w) has frequent application here. The Lagrange brackets are evaluated one by one as follows.

Let us go back to the Lagrange brackets [s;,s;]= Z(

[a, €] 3(‘9)‘539 ax,ax) ((X X Xa)(1-8)+(X1s X X)( 1LMD ?2 na
a, 2%& PP 11 Ao Az 12 An A3 —h zzm
32

Xll

((XIZ Xy X3) nm"'()(n X1 X31)(3(nM1)2D X: (—a)

After applying Zinij= 0; here, we find
k=1
3 Mna 3 nMa _ (3-9a)

ey 2y

X
. l+¢ +e
[a,i] = Z(g);aaj? gjgaﬁi) ((Xn X Xs)(1-9)+ (X Xoy X32)(_ = MID Xy |COs@ na 1_8

3

X3

((Xn Xon X3) nm+(X11 X5 Xﬂ)(z(lan) )) Xy |sinw a(l-¢)=0 (3-9b)
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3 . . 1
[a, 0] _Z(axjaxf ax’a)f) ((Xn Xy X5)(1-9)+ (X, Xy Xzz)( 1+ MID X (—na i_tf_)

Oadw 0Oad
31
nfl+e 3 om0
—((Xlz X Xzz)(—i T“_“‘J"‘(Xn X Xsl)(z(l_;)z)) Xy, ja(l1-¢)
32
= naf1-& +gaj 1-&= —’%’J 1-& (3-9¢)

> (0x,0%; 0x;0x; 1+ X 1+¢
[a,€2] = Z(&;gé_é‘ja{) ((Xn Xo1 Xa)(1=e)+(Xpn X Xss)( Ml)) )i)u na =%

((Xlz Xn X3) nm"'(){n Xy Xsl)(?)(n]\ﬁ) ))[%21])0(1 €)

Here we need to know the following four coefficients.

_XZZ
(X1 Xo1 Xa)| Xy, | = XXt X0 X0
0
=(cos{2 cosw—sing2 cosi sinw)(—sin2 sinw+cosL2 cosi cosm)
=—c0s’Q2 cos’® cosi—sin’Q2 sin’@ cosi—sin’£2 cos’@ cosi—cos 2 sin’@ cosi
=—cos’® cosi—sin’@ COSI = —Co0SI,
_X22 _XZI
(X X X3)| X, XX+ X X1 =0, (X1 Xon X3)| X, | = —X12Xo +X00X) = cosi,
0 0
_X21
(Xn X X31) X =X X5+ XX, =0.
0
And then, we find the value of [a,2].
[a, ] =—cosi nay1-&+cosi gaJ1—52=—%gJ1—gzcosi (3-9d)

Next ones are found as follows.

Xll
0x;0x; _0x;0x; 3 /1+¢ na
[a,M] = z(aaaj\; P00%) — (i) Xy X1+ (K Xan X, [0, (—————(1_82))

31

X12
n(l+e 3 nM, l+e_ na nal+g na
{0 X2 (- T2+ s 0 (FI]) 112 - R 90
32

[e,a]l=—]a,e]=0
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3 . .
1= %Q&_Qﬁ%j
[&1] ;(5561' 9c i

Xl3 Xl3
1+ .
=X Xo X31)(=a)| Xo; [cOs@ na llT::—(Xlz X )(32)1”—3ﬁ Xo; [sina(1-¢)
(I-oyl-&\x,

3
Due to the orthonormality of column vectors of X, we find

[£=0 (3-90)
Xll X

0x,0x; 63@8);) ( 1+¢& na

- = (X, Xy X31)(—a) le —na |=— (X1, X Xy)——e—=| X, |a(1 - &)

0gdw 0&0 1- _ _
(1-a1-£ly,,

1
31

M,J

[& 0] =

.
I

2
2 na & (3_9g)

=2 1t I _
=na -1":'— — na ,_1_82— ,—1_82

—
™

)

X, X

> (ox 0x; Ox;0%;) _ ?
102~ X (FE- S - o Xu)(—a)[xujna/ -0t X o) H(X“ja(l 2

j=1

From the following equality;

—X —X5
X X Xa1)| Xpp | = XX+ X0 X0, = —cosi = —(X, Xy Xp)| Xy, |»
0 0
we find
2
[&Q]=nd HLgcosi—na2 1 cosi = 22 _cosi (3-9h)
€ J1-¢ J1-&

And then we find the followings.

(536 L OX; ax,ﬁx) Y X X X ( ) - na X e
L&M= z 0sOM OsOM X X1 X31)(-a)| X _(1_ ) —(X1p Xoy X3») ~ J — Xy |a =
(I-g)J1-¢ X,

naz naz
- =0 (3-9i)

oo (o
[i,al=—a,i]=0, [i,e]=—]¢&i]=0

4 Ox; 0%, ax,az)
L, ] = Z(azaw 219

Xll
= (X3 Xo3 Xy3)sinw a(l-¢) le ll+g (X153 X»3 Xy3)cosw na / 5&22 a(l-¢&)=0 (3-9)
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3 . .
. 0x;0x; Ox;0x;
4= (“’ Y 5 19
.42 ]ZI 3io0 3id
_XZ XZI

2
= (X3 Xy Xs3)sinw a(l— g)()(lzjna 1te —(X13 X3 Xi3)cos@ na l i){“ja(l £€)

Using the two equalities;

_X22 _XZI
(X13 X23 X33) XIZ =sini sin® and (X13 X23 X33) Xll = —sini Cosw,
0 0
we find
[i, ] = na’\/1-&sini (3-9k)
Next Lagrange brackets are acquired as followings.
Ox; 0x; ax,ﬁx)
Li, M] = Z(ﬁlﬁM Oi oMY
Xll 1+
= (X3 Xy3 Xy3)sinw a(l-¢)| Xy, ( (- )) (X5 Xo3 Xz3)cosw na I Xzz =0 (3-9)
[@,a] = A/1 &, (o= [g,m]=—jﬂ [o,i] =i, 0] =
1—

0x;0x; Ox;0x;
[o,€2]= Z(aa)aé 8a;6.0)

j=

X,

= (X1 Xn Xs)a(l- 8)()(122} —-na l1+ —(Xi; X 33) [1+J[X11J (1-¢9=0  (3-9m)

Ox; Ox; _0Ox; 0x;
[, M] = Z(awazé aaQaM)

= (X Xo» Xp)a(1- g)@i](( )) X X X31) —na m[ﬁ”} Tte_, (3-9n)

2
[Qa]=—[a,2]= A/l gcosi, [26]=—[g 2] =—2LE cosi

J1-&
[Q,i]=—[i, Q] =—nd’J1-Esini, [Q0]=—w,02]=

Ox; 0x; 0x; Ox;
[2M] = Z(a.oaAj[aéaM)

Xll
~ (X Xy O)a(l- g)&?l}(( )) (X Xy Opna [+ EL)&ZJ Tre (3-90)
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We find the values of Lagrange brackets associated with mean anomaly as follows.
[M,a] =~[a,M] =5,
[(M,e] =—[eM]=0, [M,i]=—-[i,M]=0, [M,0]=-[o,M]=0, [M,Q]=-[Q2M]=0

We have evaluated all the values of the Lagrange brackets, only twelve of which are nonzero. Actually only half
of the twelve are independent (antisymmetry).
If we write the Eq. (3-3) in matrix form, we have the following.

la,a] [a,¢] [a,i] [a,o] [a,] [a,M]\( da/dt O0F/0a
[ea] [g¢€] [&i] [eo] [62] [eM]| de/dt O0F/0¢
[i,al [i¢&] [i,1] [i, 0] [i,92] [i,M]|| di/dt |_ | OF/0i
[o,a]lw, €l[w,i] [o,0]lo, Qo,M]|| do/dt OF/0w
[
[

=— (3-3)
Qal[02,€][2i] [Qw][20[2M]| ddt OF/00
M,al[M, g][M,i] [M,o][M,Q)[M, M} \dM/dt oF/oM
This equation can now be explicitly shown as the followings.
_na do | d.Q dM\ _ OF i
> ( 1-£99 n 1-& cosz n EPR (3-10a)
na’e (do .d.Q) __OF i
F(dt coszw 32 (3-10b)
dQ_ OF
a’J1—-€&sini=2 — 55 (3-10c)
na [{_ da na’s de_ OF )
th ow’ (3-10d)
2
’-1-25’41—ezcosi%%’—jﬂcoszéf—nazdl £ s1nzg-; gg, (3-10e)
1-¢
nada _ OF
Yy -1
Tdi oM (3-109)

This set of six Eqgs. (3-10a~f) can be rewritten in the form of f = ZA,kaF as follows. First, we directly have
the expressions of @ and == d'Q from Egs (3-10c, f). S

N s e T

From Eq. (3-10d), we find

naedg oF ha [ da
l1— dt ﬁa) )

And then, we have

de_ J1-&(0F 7 30F
dt (%_ 1*@)

-
na &

dQ _ 1 oF d da_ 2 0F
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From Eq. (3-10b), we have

do__  dQ J1-£0F _ _ cosi _9F_J1-£0F
dr dt nile Oc naZJI—gzsiniai na’e 0€

From Eq. (3-10e), we have

di 1 OF , cosi da___gcoside_ 1 oF cosi oF
dt

- 30 2asmidi (1-7)sinidl 20 P

na Jl £sini nale £sini na Jl £sini

From Eq. (3-10a), we have

dM_ 20F [ d.Q 2do _ 2 0F (1 a)aF
...._ —t
dt  nada I-¢ cosi & naca nadte O€

Rearranging these six expressions for i%f, we find

da_ 2 OF

& aoh -l
de _J1—- g(aF 2 aF) (3-11b)
dt i oo oM’
Zl ; a_F_cosﬁfD (3-11¢)
d ZA/I—gzsinz
do_ 1 cosi OF J1-&0F
2= < - -11
dt naz(J1—52siniai € ag} -1
do _ 1 oF

= o (3-11e)
dr na*J1-&sini 0

dt naaa na(.;@g

As described in the former section, shape of Keplerian elliptical orbit is not changing in time under central

potential V,,,,, = ———. In fact, while the satellite moves along the elliptical orbit, its mean anomaly M
increases linearly with time; dM=ndt. We define R as the deviation of the potential from central potential, then

R V Vcentml GM

(3-12)

Finally the perturbed equation of motion for satellite, Eq. (3-11), can be rewritten in terms of Z— oR without any
Sk

difference in mathematical expression except the sixth one for 0%4; Eq (3-11f). Since F=T+V, ‘S_F is related

with as follows. “

L gron gL

According to Eq. (2-26), we have ﬁ( G—M) = ﬁ(

GM, ) GM
oa r oa

2a

a
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former section, we have G—Afe =n". Therefore we can rewrite the right hand side of Eq. (3-11f) as follows.

a

dt nada

na2g 0¢ na Oa 2a2

dM_ 2 9F  (1-£)0F _ 2 (@JFG_%)JF(I—,&*Z)@_F:i@_RJmJF(l—52)8_R
na‘e 06 nada

2
na'e 0¢

Finally we state the equation of motion for satellite under perturbing potential R as

da__2 oR
dt  naoM’

2
d_e:ﬂ—e(a_R_m%),
dt  pite \O0® oM
TS
U ndJ1-&sini 0

do_ 1| cosi OR_J1-£0R
r  pg’ Jl—g2siniai & 0s)

e IR
dr nazA/I—gzsiniai '

cl'i/lzn+£6_R+(1—52)@
dt nada pgle 0€

Conclusion

We provided full derivation of the Kaula’s
formulation of the perturbed equation of motion for
satellites under noncentral potential. Also we provided
set of proofs of the Kepler’s laws for planet/satellite. In
Appendix, we described two different ways to deduce
Keplerian and others

elliptical ~ orbit including

discussion about Lagrange bracket and Poisson bracket.
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Appendix 1. Alternative derivations of Kepler’s 1st law

The Kepler’s 2nd and 3rd laws can be deduced from the Newton’s law of gravitation in a straightforward
manner. But derivation of the Keplerian ellipse »=r(¢) as in Eq. (2-15a) through direct integration is not quite
obvious.

Following is a slight abridgement of the derivation of the Kepler’s 1st law supported by Seeber (Seeber, 2003).
Similar treatment can be found in Pollard (Pollard, 1966). Newton’s equation of motion for satellite, Eq. (2-4) is
again stated as

> >

? r 3 r
ur==Gmmy,= = r=-G(m;+my)= (A1-1)
r r

> > >
Define a vector 4 as h=rx0, then, by taking cross product to Eq. (Al-1) and /%, we have
5 5 3 .
rxh=hxrG(m;+m,)r" (A1-2)

> >
Since 4 is constant in time (proportional to the angular momentum /), the left hand side of Eq. (A1-2) can
9
be rewritten as C%(Zx h) . The right hand side of Eq. (Al-2) can be rewritten as

> > 5 > 5009 5

hxrG(m+my)r~ =[(rx O)xr]G(m,+m,)r
N -3

=[r"o—(re O)r|G(m,+m,)r

= G(my+my)(F D7)

= G(m, +m2)gt@) , (A13)

For the 3rd step of Eq. (A1-3), we used the following.
> > > oA o A .
redv=re(rr+trgg)=rr

Then Eq. (Al1-2) can be written as
do 3 dfr
4 (Dxh)= + _(f) -
dt(UX h)=G(m, mZ)dt - (Al-4)
Integration of Eq. (A1-4) leads to

> >

- %_ r
Oxh=G(m +m)-+B. (A1-5)

> >
where B is the constant vector of integration and is confined to be on the orbital plane, because B must be
> > >
a linear combination of Ox/ and r. Taking inner product of Eq. (Al-5) with » leads to

TR N T TN ) > 2
re(Oxh)=he(rx0)=h"=G(m,+my)r+reB,
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which is rewritten as the following relation.

2
hHAGm+my)) _  p ’ (Al-6a)
B cosd 1+ ¢gcos¢
G(my+m,)
where p and ¢ are defined as follows.
e 1), e B (A1-6b)
G(m,+m,) ’ G(m,+my)

Two former equations of Kepler’s elliptical orbit; Eq. (2-15) and Eq. (2-20) are equivalent to Eq. (Al-6a).

3 s
Another derivation is possible from the equation of motion; Eq. (Al-1). First, the time derivatives » and r are

acquired as follows.

N Ve

= —(rr) r+re (Al-7a)

r= %j: (F—r )i+ 2rg+rd)p (A1-Tb)

Combining Eq. (Al-7b) with Eq. (Al-1), we have the following equality.

Ford = —gUmtm) (AL-8)
}"
As before, we define the variable u as u = % Then we find expressions for 7 and 7 in terms of u and its
derivatives; du and —”, as follows.
d¢ &

. l . 1du ! du
r = = - = b

2T uds

where angular momentum / is defined /=’ ¢, as before. Similarly we find

oL pdu (A1-9)

i df
Combining (A1-8) and (A1-9), we find the following equation.

d'u
—+u——G m;+m Al-10
a7 7 (my+ms) ( )
The solution for Eq. (A1-10) follows directly as

2
u=%=/l—lzG(m1+m2)+Acos(¢—¢o) (Al-11)

Eq. (Al-11) is equivalent to Eq. (2-15) or other expressions for Keplerian ellipse. This derivation has been
favored in textbooks.
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Appendix 2. Sterne’s derivation and the Relation between Poisson
bracket and Lagrange bracket

In the beginning part of main section, we attained the equation of motion for satellite as,

6
dsk__ﬁ_F -
z[sl’sk] dr asl (Az 1)

k=1

where [s;,s;] is the Lagrange bracket. The remaining part of main section was to ﬁnd 7 by using Lagrange
brackets and other manipulations.

In fact, we can do this differently by using Poisson bracket (s;,s;) as Sterne did (Sterne, 1960). Suppose we
know a set of canonical variables ¢; and p; for satellite. Then we can express the time derivative of Keplerian
orbital element s as,

dS asy _ (as k: 8S k )
Dkg+ Ly, A2-2
Canonical variables have the following properties.

o RS -
T Mo R

Then we have follows.

dsk (6Sk8H_ask8H) (&S‘k 8H8S1 ask 8Hasl) (8sk551 5skasl)8H

@~ 2\aq5p, apoa) | 2\oq,235,0p, p %0, ZZ 54:3p: 5p.a/ 35

The cartesian coordinates and associated linear momenta compose a set of canonical variables. Hamiltonian H
is identified as the total energy F=T+V. Then we can rewrite the time derivative of Keplerian element 084 as

dt
follows.

e z(sk,s,)aF (A2-4)

where the Poisson bracket (s;,s;) is defined as

8sk8S, 8sk8s,) _
(x5 = Z(a—xa—x a_xa_xz (A2-5)
We once again write the definition of Lagrange bracket.
3 C e
Ox;0x; _Ox;0x;
=\ | 2 G A2-
L0511 ;(&vkasl 6sk8s,) (A2-6)

From comparison of the two equivalent equations of motion; Egs. (A2-1) and (A2-4), we notice the inverse
relation between the Lagrange bracket and the Poisson bracket. Two matrices composed of each kinds of bracket
are negative of inverse of each other. It is noted that evaluation of Poisson bracket requires explicit form of s, in
terms of x; and x;; that is s,(x;,X;) .
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