• Title/Summary/Keyword: KdV equation

Search Result 25, Processing Time 0.029 seconds

EFFICIENT NUMERICAL METHODS FOR THE KDV EQUATION

  • Kim, Mi-Young;Choi, Young-Kwang
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.291-306
    • /
    • 2011
  • We consider the second order Strang splitting method to approximate the solution to the KdV equation. The model equation is split into three sets of initial value problems containing convection and dispersal terms separately. TVD MUSCL or MUSCL scheme is applied to approximate the convection term and the second order centered difference method to approximate the dispersal term. In time stepping, explicit third order Runge-Kutta method is used to the equation containing convection term and implicit Crank-Nicolson method to the equation containing dispersal term to reduce the CFL restriction. Several numerical examples of weakly and strongly dispersive problems, which produce solitons or dispersive shock waves, or may show instabilities of the solution, are presented.

NEW EXACT TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Lee, Youho;An, Jaeyoung;Lee, Mihye
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.359-370
    • /
    • 2011
  • In this work, we obtain new solitary wave solutions for some nonlinear partial differential equations. The Jacobi elliptic function rational expansion method is used to establish new solitary wave solutions for the combined KdV-mKdV and Klein-Gordon equations. The results reveal that Jacobi elliptic function rational expansion method is very effective and powerful tool for solving nonlinear evolution equations arising in mathematical physics.

NUMERICAL SOLUTION OF THE NONLINEAR KORTEWEG-DE VRIES EQUATION BY USING CHEBYSHEV WAVELET COLLOCATION METHOD

  • BAKIR, Yasemin
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.373-383
    • /
    • 2021
  • In this study, a numerical method deals with the Chebyshev wavelet collocation and Adomian decomposition methods are proposed for solving Korteweg-de Vries equation. Integration of the Chebyshev wavelets operational matrices is derived. This problem is reduced to a system of non-linear algebraic equations by using their operational matrix. Thus, it becomes easier to solve KdV problem. The error estimation for the Chebyshev wavelet collocation method and ADM is investigated. The proposed method's validity and accuracy are demonstrated by numerical results. When the exact and approximate solutions are compared, for non-linear or linear partial differential equations, the Chebyshev wavelet collocation method is shown to be acceptable, efficient and accurate.

Numerical modeling of internal waves within a coupled analysis framework and their influence on spar platforms

  • Kurup, Nishu V.;Shi, Shan;Jiang, Lei;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.5 no.4
    • /
    • pp.261-277
    • /
    • 2015
  • Internal solitary waves occur due to density stratification and are nonlinear in nature. These waves have been observed in many parts of the world including the South China Sea, Andaman Sea and Sulu Sea. Their effect on floating systems has been an emerging field of interest and recent offshore developments in the South China Sea where several offshore oil and gas discoveries are located have confirmed adverse effects including large platform motions and riser system damage. A valid numerical model conforming to the physics of internal waves is implemented in this paper and the effect on a spar platform is studied. The physics of internal waves is modeled by the Korteweg-de Vries (KdV) equation, which has a general solution involving Jacobian elliptical functions. The effects of vertical density stratification are captured by solving the Taylor Goldstein equation. Fully coupled time domain analyses are conducted to estimate the effect of internal waves on a typical truss spar, which is configured to South China Sea development requirements and environmental conditions. The hull, moorings and risers are considered as an integrated system and the platform global motions are analyzed. The study could be useful for future guidance and development of offshore systems in the South China Sea and other areas where the internal wave phenomenon is prominent.

SYMMETRIC SURFACE WAVES OVER A BUMP

  • Choi, J.W.;An, Daniel;Lim, Chae-Ho;Park, Sang-Ro
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.1051-1060
    • /
    • 2003
  • We study the surface waves of an incompressible fluid passing over a small bump. A forced KdV equation for surface wave is derived without assuming that flow is uniform at far upstream. New types of steady solutions are discovered numerically. Two new cut off values of Froude number are found, above the larger of which two symmetric solutions exist and under the smaller of which two different symmetric solutions exist.

WELL-POSEDNESS FOR THE BENJAMIN EQUATIONS

  • Kozono, Hideo;Ogawa, Takayoshi;Tanisaka, Hirooki
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1205-1234
    • /
    • 2001
  • We consider the time local well-posedness of the Benjamin equation. Like the result due to Keing-Ponce-Vega [10], [12], we show that the initial value problem is time locally well posed in the Sobolev space H$^{s}$ (R) for s>-3/4.

  • PDF

FRACTIONAL GREEN FUNCTION FOR LINEAR TIME-FRACTIONAL INHOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS IN FLUID MECHANICS

  • Momani, Shaher;Odibat, Zaid M.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.167-178
    • /
    • 2007
  • This paper deals with the solutions of linear inhomogeneous time-fractional partial differential equations in applied mathematics and fluid mechanics. The fractional derivatives are described in the Caputo sense. The fractional Green function method is used to obtain solutions for time-fractional wave equation, linearized time-fractional Burgers equation, and linear time-fractional KdV equation. The new approach introduces a promising tool for solving fractional partial differential equations.

NEW EXACT SOLUTIONS OF SOME NONLINEAR EVOLUTION EQUATIONS BY SUB-ODE METHOD

  • Lee, Youho;An, Jeong Hyang
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.683-699
    • /
    • 2013
  • In this paper, an improved ($\frac{G^{\prime}}{G}$)-expansion method is proposed for obtaining travelling wave solutions of nonlinear evolution equations. The proposed technique called ($\frac{F}{G}$)-expansion method is more powerful than the method ($\frac{G^{\prime}}{G}$)-expansion method. The efficiency of the method is demonstrated on a variety of nonlinear partial differential equations such as KdV equation, mKd equation and Boussinesq equations. As a result, more travelling wave solutions are obtained including not only all the known solutions but also the computation burden is greatly decreased compared with the existing method. The travelling wave solutions are expressed by the hyperbolic functions and the trigonometric functions. The result reveals that the proposed method is simple and effective, and can be used for many other nonlinear evolutions equations arising in mathematical physics.

A Theoretical Analysis of the Weak Shock Waves Propagating through a Bubbly Flow (기액 이상류를 전파하는 약한 충격파에 관한 이론해석적 연구)

  • Jun, Gu-Sik;Baek, Seung-Cheol;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1617-1622
    • /
    • 2004
  • Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data.

  • PDF