• Title/Summary/Keyword: Kalman Learning

Search Result 57, Processing Time 0.024 seconds

Comparison of Different Schemes for Speed Sensorless Control of Induction Motor Drives by Neural Network (유도전동기의 속도 센서리스 제어를 위한 신경회로망 알고리즘의 추정 특성 비교)

  • 이경훈;국윤상;김윤호;최원범
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.526-530
    • /
    • 1999
  • This paper presents a newly developed speed sensorless drive using Neural Network algorithm. Neural Network algorithm can be divided into three categories. In the first one, a Back Propagation-based NN algorithm is well-known to gradient descent method. In the second scheme, a Extended Kalman Filter-based NN algorithm has just the time varying learning rate. In the last scheme, a Recursive Least Square-based NN algorithm is faster and more stable than the classical back-propagation algorithm for training multilayer perceptrons. The number of iterations required to converge and the mean-squared error between the desired and actual outputs is compared with respect to each method. The theoretical analysis and experimental results are discussed.

  • PDF

Development of a neural-based model for forecating link travel times (신경망 이론에 의한 링크 통행시간 예측모형의 개발)

  • 박병규;노정현;정하욱
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.1
    • /
    • pp.95-110
    • /
    • 1995
  • n this research neural -based model was developed to forecast link travel times , And it is also compared wiht other time series forecasting models such as Box-Jenkins model, Kalman filter model. These models are validated to evaluate the accuracy of models with real time series data gathered by the license plate method. Neural network's convergency and generalization were investigated by modifying learning rate, momentum term and the number of hidden layer units. Through this experiment, the optimum configuration of the nerual network architecture was determined. Optimumlearining rate, momentum term and the number of hidden layer units hsow 0.3, 0.5, 13 respectively. It may be applied to DRGS(dynamic route guidance system) with a minor modification. The methods are suggested at the condlusion of this paper, And there is no doubt that this neural -based model can be applied to many other itme series forecating problem such as populationforecasting vehicel volume forecasting et .

  • PDF

Advanced Scheme for PDR system Using Neural Network (Neural Network를 이용한 PDR 시스템의 정확도 향상 기법)

  • Kwak, Hwy-Kuen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5219-5226
    • /
    • 2014
  • This paper proposes an improved scheme of pedestrian position information system using neural network theory in a GPS-disabled area. Through a learning/obtaining gait pattern and step distance about walk, run, duck walk, crab walk and crawl, the position estimation error could be minimized by rejecting the inertial navigation drift. A portable hardware module was implemented to evaluate the performance of the proposed system. The performance and effectiveness of the suggested algorithm was verified by experiments indoors.

A Multi-Agent Simulation for the Electricity Spot Market

  • Oh, Hyungna
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.255-263
    • /
    • 2003
  • A multi-agent system designed to represent newly deregulated electricity markets in the USA is aimed at testing the capability of the multi-agent model to replicate the observed price behavior in the wholesale market and developing a smart business intelligence which quickly searches the optimum offer strategy responding to the change in market environments. Simulation results show that the optimum offer strategy is to withhold expensive generating units and submit relatively low offers when demand is low, regardless of firm size; the optimum offer strategy during a period of high demand is either to withhold capacity or speculate for a large firm, while it is to be a price taker a small firm: all in all, the offer pattern observed in the market is close to the optimum strategy. From the firm's perspective, the demand-side participation as well as the intense competition dramatically reduces the chance of high excess profit.

  • PDF

Autonomous Driving System for Advanced Safety Vehicle (고안전도 차량을 위한 자율주행 시스템)

  • Shin, Young-Geun;Jeon, Hyun-Chee;Choi, Kwang-Mo;Park, Sang-Sung;Jang, Dong-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.30-39
    • /
    • 2007
  • This paper is concerned with development of system to detect an obstructive vehicle which is an essential prerequisite for autonomous driving system of ASV(Advanced Safety Vehicle). First, the boundary of driving lanes is detected by a Kalman filter through the front image obtained by a CCD camera. Then, lanes are recognized by regression analysis of the detected boundary. Second, parameters of road curvature within the detected lane are used as input in error-BP algorithm to recognize the driving direction. Finally, an obstructive vehicle that enters into the detection region can be detected through setting detection fields of the front and lateral side. The experimental results showed that the proposed system has high accuracy more than 90% in the recognition rate of driving direction and the detection rate of an obstructive vehicle.

Indirect Adaptive Control of Nonlinear Systems Using a EKF Learning Algorithm Based Wavelet Neural Network (확장 칼만 필터 학습 방법 기반 웨이블릿 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어)

  • Kim Kyoung-Joo;Choi Yoon Ho;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.720-729
    • /
    • 2005
  • In this paper, we design the indirect adaptive controller using Wavelet Neural Network(WNN) for unknown nonlinear systems. The proposed indirect adaptive controller using WNN consists of identification model and controller. Here, the WNN is used in both Identification model and controller The WNN has advantage of indicating the location in both time and frequency simultaneously, and has faster convergence than MLPN and RBFN. There are several training methods for WNN, such as GD, GA, DNA, etc. In this paper, we present the Extended Kalman Filter(EKF) based training method. Although it is computationally complex, this algorithm updates parameters consistent with previous data and usually converges in a few iterations. Finally, ore illustrate the effectiveness of our method through computer simulations for the Buffing system and the one-link rigid robot manipulator. From the simulation results, we show that the indirect adaptive controller using the EKF method has better performance than the GD method.

Distance Estimation Based on RSSI and RBF Neural Network for Location-Based Service (위치 서비스를 위한 RBF 신경회로망과 RSSI 기반의 거리추정)

  • Byeong-Ro Lee;Ju-Won Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.265-271
    • /
    • 2023
  • Recently, location information services are gradually expanding due to the development of information and communication technology. RSSI is widely used to extract indoor and outdoor locations. The indoor and outdoor location estimation methods using RSSI are less accurate due to the influence of radio wave paths, interference, and surrounding wireless devices. In order to improve this problem, a distance estimation method that takes into account the wireless propagation environment is necessary. Therefore, in this study, we propose a distance estimation algorithm that takes into account the radio wave environment. The proposed method estimates the distance by learning RSSI input and output considering the RBF neural network and the propagation environment. To evaluate the performance of the proposed method, the performance of estimating the location of the receiver within a range of up to 55[m] using a BLE beacon transmitter and receiver was compared with the average filter and Kalman filter. As a result, the distance estimation accuracy of the proposed method was 6.7 times higher than that of the average filter and Kalman filter. As shown in the results of this performance evaluation, if the method of this study is applied to location services, more accurate location estimation will be possible.

HMM-based Intent Recognition System using 3D Image Reconstruction Data (3차원 영상복원 데이터를 이용한 HMM 기반 의도인식 시스템)

  • Ko, Kwang-Enu;Park, Seung-Min;Kim, Jun-Yeup;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.135-140
    • /
    • 2012
  • The mirror neuron system in the cerebrum, which are handled by visual information-based imitative learning. When we observe the observer's range of mirror neuron system, we can assume intention of performance through progress of neural activation as specific range, in include of partially hidden range. It is goal of our paper that imitative learning is applied to 3D vision-based intelligent system. We have experiment as stereo camera-based restoration about acquired 3D image our previous research Using Optical flow, unscented Kalman filter. At this point, 3D input image is sequential continuous image as including of partially hidden range. We used Hidden Markov Model to perform the intention recognition about performance as result of restoration-based hidden range. The dynamic inference function about sequential input data have compatible properties such as hand gesture recognition include of hidden range. In this paper, for proposed intention recognition, we already had a simulation about object outline and feature extraction in the previous research, we generated temporal continuous feature vector about feature extraction and when we apply to Hidden Markov Model, make a result of simulation about hand gesture classification according to intention pattern. We got the result of hand gesture classification as value of posterior probability, and proved the accuracy outstandingness through the result.

The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction (데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로)

  • Chun, Se-Hak
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.239-251
    • /
    • 2019
  • Statistical methods such as moving averages, Kalman filtering, exponential smoothing, regression analysis, and ARIMA (autoregressive integrated moving average) have been used for stock market predictions. However, these statistical methods have not produced superior performances. In recent years, machine learning techniques have been widely used in stock market predictions, including artificial neural network, SVM, and genetic algorithm. In particular, a case-based reasoning method, known as k-nearest neighbor is also widely used for stock price prediction. Case based reasoning retrieves several similar cases from previous cases when a new problem occurs, and combines the class labels of similar cases to create a classification for the new problem. However, case based reasoning has some problems. First, case based reasoning has a tendency to search for a fixed number of neighbors in the observation space and always selects the same number of neighbors rather than the best similar neighbors for the target case. So, case based reasoning may have to take into account more cases even when there are fewer cases applicable depending on the subject. Second, case based reasoning may select neighbors that are far away from the target case. Thus, case based reasoning does not guarantee an optimal pseudo-neighborhood for various target cases, and the predictability can be degraded due to a deviation from the desired similar neighbor. This paper examines how the size of learning data affects stock price predictability through k-nearest neighbor and compares the predictability of k-nearest neighbor with the random walk model according to the size of the learning data and the number of neighbors. In this study, Samsung electronics stock prices were predicted by dividing the learning dataset into two types. For the prediction of next day's closing price, we used four variables: opening value, daily high, daily low, and daily close. In the first experiment, data from January 1, 2000 to December 31, 2017 were used for the learning process. In the second experiment, data from January 1, 2015 to December 31, 2017 were used for the learning process. The test data is from January 1, 2018 to August 31, 2018 for both experiments. We compared the performance of k-NN with the random walk model using the two learning dataset. The mean absolute percentage error (MAPE) was 1.3497 for the random walk model and 1.3570 for the k-NN for the first experiment when the learning data was small. However, the mean absolute percentage error (MAPE) for the random walk model was 1.3497 and the k-NN was 1.2928 for the second experiment when the learning data was large. These results show that the prediction power when more learning data are used is higher than when less learning data are used. Also, this paper shows that k-NN generally produces a better predictive power than random walk model for larger learning datasets and does not when the learning dataset is relatively small. Future studies need to consider macroeconomic variables related to stock price forecasting including opening price, low price, high price, and closing price. Also, to produce better results, it is recommended that the k-nearest neighbor needs to find nearest neighbors using the second step filtering method considering fundamental economic variables as well as a sufficient amount of learning data.

A Real-time People Counting Algorithm Using Background Modeling and CNN (배경모델링과 CNN을 이용한 실시간 피플 카운팅 알고리즘)

  • Yang, HunJun;Jang, Hyeok;Jeong, JaeHyup;Lee, Bowon;Jeong, DongSeok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.70-77
    • /
    • 2017
  • Recently, Internet of Things (IoT) and deep learning techniques have affected video surveillance systems in various ways. The surveillance features that perform detection, tracking, and classification of specific objects in Closed Circuit Television (CCTV) video are becoming more intelligent. This paper presents real-time algorithm that can run in a PC environment using only a low power CPU. Traditional tracking algorithms combine background modeling using the Gaussian Mixture Model (GMM), Hungarian algorithm, and a Kalman filter; they have relatively low complexity but high detection errors. To supplement this, deep learning technology was used, which can be trained from a large amounts of data. In particular, an SRGB(Sequential RGB)-3 Layer CNN was used on tracked objects to emphasize the features of moving people. Performance evaluation comparing the proposed algorithm with existing ones using HOG and SVM showed move-in and move-out error rate reductions by 7.6 % and 9.0 %, respectively.