• Title/Summary/Keyword: Kaehler manifold

Search Result 54, Processing Time 0.018 seconds

GEOMETRIC CHARACTERISTICS OF GENERIC LIGHTLIKE SUBMANIFOLDS

  • Jha, Nand Kishor;Pruthi, Megha;Kumar, Sangeet;Kaur, Jatinder
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.179-194
    • /
    • 2022
  • In the present study, we investigate generic lightlike submanifolds of indefinite nearly Kaehler manifolds. After proving the existence of generic lightlike submanifolds in an indefinite generalized complex space form, a non-trivial example of this class of submanifolds is discussed. Then, we find a characterization theorem enabling the induced connection on a generic lightlike submanifold to be a metric connection. We also derive some conditions for the integrability of distributions defined on generic lightlike submanifolds. Further, we discuss the non-existence of mixed geodesic generic lightlike submanifolds in a generalized complex space form. Finally, we investigate totally umbilical generic lightlike submanifolds and minimal generic lightlike submanifolds of an indefinite nearly Kaehler manifold.

REAL HALF LIGHTLIKE SUBMANIFOLDS WITH TOTALLY UMBILICAL PROPERTIES

  • Jin, Dae-Ho
    • The Pure and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.51-63
    • /
    • 2010
  • In this paper, we prove two characterization theorems for real half lightlike submanifold (M,g,S(TM)) of an indefinite Kaehler manifold $\bar{M}$ or an indefinite complex space form $\bar{M}$(c) subject to the conditions : (a) M is totally umbilical in $\bar{M}$, or (b) its screen distribution S(TM) is totally umbilical in M.

SOME EIGENFORMS OF THE LAPLACE-BELTRAMI OPERATORS IN A RIEMANNIAN SUBMERSION

  • MUTO, YOSIO
    • Journal of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.39-57
    • /
    • 1978
  • It is given in the Lecture Note [1] of Berger, Gauduchon and Mazet that, if ${\pi}$n: (${\tilde{M}}$, ${\tilde{g}}$)${\rightarrow}$(${\tilde{M}}$, ${\tilde{g}}$) is a Riemannian submersion with totally geodesic fibers, ${\Delta}$ and ${\tilde{\Delta}}$ are Laplace operators on (${\tilde{M}}$, ${\tilde{g}}$) and (M, g) respectively and f is an eigenfunction of ${\Delta}$, then its lift $f^L$ is also an eigenfunction of ${\tilde{\Delta}}$ with the common eigenvalue. But such a simple relation does not hold for an eigenform of the Laplace-Beltrami operator ${\Delta}=d{\delta}+{\delta}d$. If ${\omega}$ is an eigenform of ${\Delta}$ and ${\omega}^L$ is the horizontal lift of ${\omega}$, ${\omega}^L$ is not in genera an eigenform of the Laplace-Beltrami operator ${\tilde{\Delta}}$ of (${\tilde{M}}$, ${\tilde{g}}$). The present author has obtained a set of formulas which gives the relation between ${\tilde{\Delta}}{\omega}^L$ and ${\Delta}{\omega}$ in another paper [7]. In the present paper a Sasakian submersion is treated. A Sasakian manifold (${\tilde{M}}$, ${\tilde{g}}$, ${\tilde{\xi}}$) considered in this paper is such a one which admits a Riemannian submersion where the base manifold is a Kaehler manifold (M, g, J) and the fibers are geodesics generated by the unit Killing vector field ${\tilde{\xi}}$. Then the submersion is called a Sasakian submersion. If ${\omega}$ is a eigenform of ${\Delta}$ on (M, g, J) and its lift ${\omega}^L$ is an eigenform of ${\tilde{\Delta}}$ on (${\tilde{M}}$, ${\tilde{g}}$, ${\tilde{\xi}}$), then ${\omega}$ is called an eigenform of the first kind. We define a relative eigenform of ${\tilde{\Delta}}$. If the lift ${\omega}^L$ of an eigenform ${\omega}$ of ${\Delta}$ is a relative eigenform of ${\tilde{\Delta}}$ we call ${\omega}$ an eigenform of the second kind. Such objects are studied.

  • PDF