• Title/Summary/Keyword: KUH

Search Result 212, Processing Time 0.019 seconds

Design of Aircraft Internal On-glass Antennas (항공기용 내장형 온-글래스 안테나 설계)

  • Kang, Woo-Joon;Choo, Ho-Sung;KIim, Young-Gi;Kang, Ho-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.65-71
    • /
    • 2009
  • In this paper, we propose an aircraft on-glass antenna for FM radio reception. To obtain broad matching bandwidth, we employed a multiple loop as the basic antenna structure, and the shape of the loops mimics the frame of a window in order to ensure pilots' field of view as large as possible. The detailed design parameters of the multi-loop structure were determined using a Pareto genetic algorithm with a full wave EM simulation tool. The optimized on-glass antenna was built and installed on a Korean utility helicopter (KUH) The measurement results showed a half power matching bandwidth of about 63.3 %, average vertical bore-sight gain of about -12.98 dBi in the FM band.

Design and Verification of Built In Test For KUH (한국형 기동헬기 자체진단 시험 설계 및 입증)

  • Kim, Sung-Woo;Lee, Byoung-Hwa;Chang, Won-Hong;Oh, Woo-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.623-628
    • /
    • 2012
  • Mission Equipment Package(MEP) system is a collection of avionic components that are integrated to perform the mission of the Korean Utility Helicopter(KUH). Built In Test(BIT) reduces the need for skilled personnel and special test equipment, and reduces maintenance down-time of system. The increasing complexity of avionics equipments has resulted in an increased need to provide BIT functions. This paper describe the development and verification for the KUH MEP system BIT.

An Overview of Flight Test Planning and Test Results for the Development of Korean Utility Helicopter (한국형 기동헬기 개발을 위한 비행시험 계획 및 시험결과 개요)

  • Kwon, Hyuk-Jun;Park, Jaeyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.268-276
    • /
    • 2013
  • The objective of this paper is to give a general understanding for the development flight test of Korean Utility Helicopter(KUH). This paper contains the contents of detailed flight test plan, the type of flight test, an introduction to main flight test area, and the overview of flight test results. At the beginning, more than 8,500 test points were identified for airworthiness certification to show the compliance for the KUH development requirements. However, the number of flight test points were optimized to 7,800 at the end. To accomplish the test objectives, about 860 flight test sorties had been performed, and more than 1,000 test sorties were consumed for trouble shooting. This paper also describes some major issues faced during development flight test phase.

A Study on Proper Procedure for Helicopter Transmission Endurance Test (적절한 헬기 트랜스미션 내구도 시험절차 연구)

  • Lee, Sangmok;Hwang, Jungsun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.771-778
    • /
    • 2013
  • Transmission is a core component of helicopter to transmit power from engine to rotor and must have a endurance to be able to show satisfactorily its performance required during its life time. When developing a new helicopter, both military and civil airworthiness authorities require a tie-down test to verify its endurance. Procedure for transmission endurance test is described in FAR part 29 or US military specification but its details are more or less ambiguous. In this paper, we have proposed a proper procedure for transmission endurance test by giving KUH transmission endurance test example including determination of applicable torque, load and test profile.

Ground Vibration Test for Korean Utility Helicopter (한국형 기동헬기 전기체 지상진동시험)

  • Kim, Se-Hee;Kwak, Dong-Il;Jung, Se-Un;Choi, Jong-Ho;Kim, Joung-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.6
    • /
    • pp.495-501
    • /
    • 2013
  • Korean Utility Helicopter (KUH) has been designed to avoid the blade passing frequency and any instability due to a coupling of dynamic characteristics between the main rotor and the airframe in ground operation. For these design objectives, the vibration analysis and the ground resonance analysis were performed to analyze the dynamic characteristics of the airframe and the main rotor. Then, the whirl-tower test was conducted to identify the dynamic characteristics of the main rotor and the ground vibration test (GVT) was conducted to identify the dynamic characteristics of the airframe. The GVT for KUH was conducted with the test conditions and test articles established in consideration of each flight and ground condition. This paper shows the method and technique for performing the GVT for KUH and presents the correlation technique and the results for the correlated analysis model.

Qualification Process of T700/701K Engine for KUH (한국형 기동헬기 엔진 (T700/701K) 인증 과정)

  • Jung, Yong-Wun;Kim, Jae-Hwan;Ahn, Iee-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.344-347
    • /
    • 2011
  • This paper presents qualification process of the T700/701K turbo-shaft engine for Korean Utility Helicopter(KUH). The T700/701K is the rear-drive variant of the GE's T700-701C/D engine which was qualified for military applications in the world. The main scope of the development is the modification from a front-drive engine to a rear-drive one, the performance enhancement of the power turbine and the incorporation of two channel FADEC(Full Authority Digital Engine Control) system for more reliable operation. Therefore, T700/701K engine must be qualified by Korean government in order to perform a flight in the country. Reflecting the influence of developing scope, the main requirements including performance and control are verified by test and analysis, while the requirement for module or component that is same to that of T700-701C/D are verified by similarity.

  • PDF

Design of a Double-Faced Window Printed Antenna for Aircraft Applications (항공기용 양면 인쇄형 글래스 안테나 설계)

  • Byun, Gang-Il;Han, Wone-Keun;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.131-139
    • /
    • 2011
  • In this paper, we propose a double-faced window printed antenna for aircraft applications. The proposed antenna structure consists of a feeding line and a multi-loop radiator located on different sides of the window to use the limited given-area effectively. The proposed antenna is optimized by the genetic algorithm in conjunction with the FEKO EM simulator. The optimized antenna is built and installed on a 1/10 sized KUH-Surion mock-up and antenna performances such as the reflection coefficient and the radiation patterns are measured. The optimized antenna shows a half power matching bandwidth of about 33 % at 60 MHz and an average bore-sight gain of about -3.49 dBi. To verify the reception capability of the optimized antenna, we simulated the received power according to a flight scenario. The result confirms that the optimized antenna shows a minimum received power level above -60 dBm at a range of 200 km, which is similar to the pole antenna that is currently used as a FM voice antenna for KUH-Surion.

DVI cable Improvement for Preventing MFD Abnormal Display of a Rotary-wing Aircraft (회전익 항공기 다기능시현기의 이상시현을 방지하기 위한 DVI 케이블 개선)

  • Kim, Young Mok;Jeong, Sang-Gyu;Cho, Jae Po;Choi, Doo-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.782-789
    • /
    • 2018
  • Multi-Function Display (MFD) of Korean Utility Helicopter (KUH) displays image information(navigation, flight, topographical and maintenance information) delivered from Mission Computer (MC) during flight operation. The abnormal display of MFD such as flickering phenomenon was identified in the system development. It was solved by improving the shielding performance of the DVI cable and changing the DVI cable installation path at the first mass production. However, it was occurred again when the aircraft was operated for one or two years after delivery. It was also identified in the evaluation process of the derivative helicopters. Therefore, a comprehensive review of the aircraft system level has been performed to solve the problem of MFD malfunction at first and then a design improvement plan was derived by improving the DVI cable. In this paper, the causes of MFD anomalies are analyzed and also the process of design improvement are summarized. The validity of the improvement has been verified through the DVI cable assembly comparison test, SIL/ground/flight test.

Design Improvement about Abnormal Lighting of Anti-Collision Light for a Rotary-wing Aircraft (회전익 항공기 충돌방지등의 이상점등에 대한 설계 개선)

  • Kim, Young Mok;Seo, Young Jin;Lee, Yoon Woo;Lee, Joo Hyung;Choi, Doo-Hyun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.79-86
    • /
    • 2019
  • An anti-collision light of a rotary-wing aircraft is used for the purpose of preventing collision during the operation of an aircraft and is a key component to ensure flight safety. The anti-collision lights of the Korean Utility Helicopter (KUH) consist of upper and lower lights, and the power supply of anti-collision lights mounted on the aircraft. The anti-collision light is designed as a dual structure capable of brightness control and selective lighting. During the operation after delivery of the aircraft, abnormal lighting of anti-collision light occurred. In this paper, a comprehensive review of the aircraft system and component level was conducted to solve these phenomena at first. Then, the causes of anti-collision light anomalies were analyzed and the design changes are presented. The validity of design changes has been verified through the component and aircraft system ground/flight test.