• Title/Summary/Keyword: KSLV

Search Result 373, Processing Time 0.024 seconds

Development and Performance test of Mechanical Support Equipment for Assebmly/Integration of KSLV-I (KSLV-I 총조립용 기계지원장비 개발 및 성능시험)

  • Jin, Seung-Bo;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.116-124
    • /
    • 2010
  • Ground complex composed of Assembly Complex(AC) and Launch Complex(LC) which is located on Oenarodo space center in Kohung is necessary for successful launching of KSLV-I. AC performs accepting of a KSLV-I 1st stage and 2nd stage, stage assembly, the integrated launch vehicle, the checked out, and all kinds of performance test, pre-launch tests and processing. At AC, the mechanical support equipments, that is called the technological equipments, are installed in the Launch Vehicle Assembly Test Building(LVATB). These technological equipments have diverse forms of an interface with mechanical/electric device of the launch vehicle and have to provide a condition and the performance guarantee of an optimum in the launching operation process. In this paper, the requirements specification and manufacturing performance test for the mechanical support equipments which are used in the assembly/disassembly and test of the launch vehicle are introduced.

KSLV 추진기관 종합시험설비 피해 사고 예측 모델 해석

  • Lee, Jung-Ho;Kang, Sun-Il;Yu, Byung-Il;Kim, Yong-Wook;Cho, Sang-Yeon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.163-170
    • /
    • 2005
  • According to the KSLV program of KARI, it is planed to develop various launch vehicle and satellite 10 years hereafter. Large-scale test facilities, such as ReTF and PTA-II, are needed to fulfill this launch vehicle/satellite development project. The authors intend to arrange and describe various indexes that are needed in test facility design, construction and operation process. This technical paper is describing model analysis of damage prediction of accident in KSLV Integrated Propulsion System Test Facility based on propellant storage quantity and layout. In addition, the result can be used to produce safer design of test facility.

  • PDF

Planning of Integrated Test for Propulsion System of Space Launch Vehicle (우주 발사체 추진기관 종합 시험 계획 수립)

  • Cho, Sang-Yeon;Kim, Sang-Heon;Bershadesky, V.;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.89-95
    • /
    • 2011
  • Korea Space Launch Vehicle II (KSLV-II) planned to launch in 2021 is 3 stage rocket which can inject 1.5 ton satellite in low earth orbit. KSLV-II will adapt the newly developed liquid rocket engines for its propulsion system of each stage. For the evaluation of development level for rocket engine, integrated system test performed in appropriate facility is needed. In this study, test article and major parameters for certifying the propulsion system of KSLV-II were reviewed and optimum test cycle and test duration for satisfying system reliability requirement were illustrated.

Acoustic Loads Test of the Upper Stage of KSLV-I (소형위성발사체 상단부의 음향하중시험)

  • Chun, Young-Doo;Park, Jong-Chan;Chung, Eui-Seung;Park, Jung-Joo;Cho, Kwang-Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.224-227
    • /
    • 2007
  • This paper introduces the results of acoustic loads test conducted on the upper stage assembly of KSLV-I, which is the first Korea space launch vehicle. A launch vehicle and its payloads are subjected to severe acoustic pressure loading when they lift off and ascent during the transonic periods. Acoustic loadings are spreaded out broad frequncy-spectrum up to 10,000Hz. Acoustic loads are a primary source of structural random vibration of the upper stage and payloads. Therefore, in order to verify the structural integrity of the upper stage assembly of KSLV-I and the survivability of its components under severe random vibration environment, acoustic loads test is conducted in the high intensity acoustic chamber with 142dB (overall SPL). The results show the structural design and component random vibration specifications well meet with the environmental requirements.

  • PDF

KSLV-1 1st stage Rear Fuselage Upper Compartment Detail Design (KSLV-1 1단 후방동체 상부 조합체 상세설계)

  • Yoo, Jae-Seok;Jeong, Ho-Kyeong;Jang, Soon-Young
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.117-131
    • /
    • 2009
  • In this study, a detail design was conducted for KSLV-1 1st stage Rear Fuselage Upper Compartment assembly. A basic structural sizing was done by the aircraft fuselage sizing in-house program. The frame structural design and the interface check were conducted by the FE and the CAD program. The structural margin of safety was conformed by FE analysis for the normal section model and duct cut-out section models which are the weakest parts of the rear fuselage. The shear stress analysis was performed for a fastener design of the skin-stringer which is most affected by the shear stress induced by the shear load.

  • PDF

KSLV-II $1^{st}$ Stage Clustered Engine Arrangement Concept (한국형발사체 1단 클러스터드 엔진 배치 개념)

  • Lee, Han-Ju;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • Generally, the first stage of a launch vehicle requires high thrust to achieve a mission. We can use one high thrust level engine or a clustered engine system which made of several small thrust level engines to make high thrust. The first stage propulsion system of KSLV-II has 300tf thrust to satisfy the mission. But it is impractical to make high thrust by one engine at this moment in time. So we should cluster four 75tf class engines which can be applied to make a required thrust for the first stage propulsion system. This article deals with the concept of the first stage clustered engine arrangement of KSLV-II.

Vibration and Shock Measurement of KSLV-I Kick Motor on the Ground Test (KSLV-I 킥 모터 지상연소시험에서의 진동 및 충격 계측)

  • Oh, Jun-Seok;Kim, Jeong-Yong;Roh, Woong-Rae;Eun, Hee-Kwang;Im, Jong-Min;Moon, Sang-Mu
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.98-104
    • /
    • 2009
  • A solid kick motor is used for propulsion system of KSLV-I 2nd stage. During combustion of the kick motor, vibration and shock could be generated. And it could be transferred to the vehicle equipment bay through the kick motor body. If vibration and shock transferred to the vehicle equipment bay are considerable, electrical equipments could be disordered. Therefore we need to verify influence of vibration and shock caused by combustion of the kick motor. In this research, we measured vibration of the kick motor on the ground firing test. Based on this measurement data, we analyzed random vibration and shock response spectrum.

  • PDF

The Launch Vehicle Autopilot Structure Design and Analysis with Roll Compensation Algorithm (롤 보상알고리듬을 적용한 발사체 자세제어기 구조 설계 및 분석)

  • Park, Yong-Kyu;Oh, Choong-Seok;Sun, Byung-Chan;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.98-106
    • /
    • 2011
  • This paper is summarized for designing launch vehicle autopilot structure with attitude angle command from guidance algorithm and for evaluating performance of autopilot using launch vehicle six-degree of freedom simulation program. The suggested autopilot has heritage from KSR-III/KSLV-I upper stage autopilot designing experience, and it has two design point. The one is, it must have same performance with KSR-III/KSLV-I upper stage autopilot, the other is, it must be simple autopilot structure and use low number of variable to apply on-board system. It is evaluated the performance using launch vehicle six-degree of freedom simulation program in case of roll maneuvering and no roll control flight condition.

FDTD Analysis of the Mutual Coupling Between Closely Placed IFAs (근접한 IFA 사이의 신호결합에 대한 FDTD 해석)

  • Ji, Ki-Man;Lee, Soo-Jin;Chung, Eui-Seung
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.106-115
    • /
    • 2010
  • Because of space limitations, interferences between antennas of the KSLV-I communication systems occur and their effects become worse during all sorts of tests such as the flight test using a light plane. In this paper, coupled signal magnitude is calculated using the FDTD method. The theory of the FDTD, absorbing boundary condition, source input technique, and post processing of data are explained. The calculated coupling factor between two IFAs, which have 2 GHz resonance frequency and placed 5 cm apart, is -12.7 dB. Applied coupling calculation method can be effectively used for KSLV-I performance analysis, subsystem design, antenna arrangement, and communication link budget for the next space launch vehicle.