• Title/Summary/Keyword: KSIC

Search Result 972, Processing Time 0.02 seconds

A Study on Inspection-ability and Classification-ability Evaluation for Mechanical Parts (기계부품의 검사 및 분류성 평가에 관한 연구)

  • Chang-Su Jeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1055-1062
    • /
    • 2023
  • Globally, the need for remanufacturing or reusing ships and various mechanical parts continues to increase due to environmental problems including global warming. Research on remanufacturing is being carried out in many areas. However, research on inspection and classification to identify the performance or degree of wear of mechanical parts is insufficient. In particular, studies on the inspection-ability and classification-ability of mechanical parts equipped with various materials and complex forms are highly required. Remanufacturing must be considered from the stage of design to extend the life cycle of mechanical parts. Particularly, it is very important to perform research for evaluating the degree of ease to inspect and classify various sorts of wear or deterioration of parts caused by long-term use easily. In this study, the degree of ease in inspecting or classifying mechanical parts for remanufacturing is defined as inspection-ability and classification-ability. In fact, to remanufacture old parts, inspection-ability and classification-ability should be reflected from the stage of design. The purpose of this study is to evaluate the inspection-ability and classification-ability of ships and various mechanical parts. This researcher has presented the quantitative evaluation procedure of inspection-ability and classification-ability, derived the factors and ranges that influence each of the details of easiness, assigned scores according to the ranges of the factors, and calculated weights. Lastly, this study presents the procedure of scoring to evaluate the overall weights of inspection-ability and classification-ability and also inspection-ability and classification-ability quantitatively.

Study on the Fly-back Topology of New Power Feed-back Method for Active Cell Balancing (엑티브 셀 밸런싱을 위한 새로운 전력 피드백 방식의 플라이백 토폴로지에 관한 연구)

  • Seong-Yong Kang;Myeong-Jin Song;Seong-Mi Park;Sung-Jun Park;Jae-Ha Ko
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1083-1095
    • /
    • 2023
  • Recently, the demand for low-voltage, high-capacity ESS is rapidly increasing due to the revitalization of the e-mobility industry, which is mainly powered by electricity. In addition, the demand for portable power banks is rapidly increasing due to the revitalization of leisure industries such as camping and fishing. The ESS with this structure consists of a small number of series cells and many parallel cells, resulting in a system with a large rated current. Therefore, the number of power devices for cell balancing configured in series is small, but a balancing device with a large current capacity is required. Construction of a constant temperature device in such a low-voltage, high-current ESS is difficult due to economic issues. The demand for an active balancing system that can solve the passive balancing heating problem is rapidly increasing. In this paper, propose a power feedback fly-back topology that can solve the balancing heating problem. The characteristic of the proposed topology is that a series-connected voltage sharing voltage is used as the input of the flyback converter, and the converter output is connected to one transformer. In this structure, the converter output for cell voltage balancing shares magnetic flux through one high-frequency transformer, so the cell voltage connected to the converter automatically converges to the same voltage.

New Communication Method using Pulse Width Information for Power Converter Parallel Operation (전력변환기 병렬운전을 위한 펄스폭 정보를 이용한 새로운 통신방식)

  • Dong-Whan Kim;Seong-Cheol Choi;Tuan-Vu Le;Sung-Jun Park;Seong-Mi Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1097-1108
    • /
    • 2023
  • Recently, demand for technology for energy economy and stable supply is increasing due to the increase in power demand of loads. The amount of DC power generation using new and renewable energy is noticeably increasing, and the use of DC power supplies is also increasing due to the increase in electric vehicles and digital loads. During parallel operation to increase the capacity of the power converter, the module bus method or the method using Can communication and serial communication has significant difficulties in smooth operation due to communication time delay for information sharing. Synchronization of information sharing of each power converter is essential for smooth parallel operation, and minimization of communication time delay is urgently needed as a way to overcome this problem. In this paper, a new communication method using pulse width information is proposed as a communication method specialized for parallel operation of power converters to compensate for the disadvantage of communication transmission delay in the existing system. The proposed communication method has the advantage of being easily implemented using the PWM and Capture function of the microcomputer. In addition, the DC/DC converter for DC distribution was verified through simulation and experiment, and it has the advantage of easy capacity expansion when applied to parallel operation of various types of power converters as well as DC/DC converters.

Fire Monitoring System for Traditional Markets based on Digital Twin-IoT Sensing (디지털 트윈 & IoT Sensing 융합 기반 전통시장 화재 모니터링 시스템)

  • Jung-Taek Hong;Kyu-Hyup Lee;Jin-Woo Song;Seo-Joon Lee;Young-Hee Chang;Soon-Wook Kwon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1251-1258
    • /
    • 2023
  • Traditional markets are infrastructure with facilities and characteristics of very high population density. Recently, arcades have been installed through traditional market modernization policies, and aging infrastructure has been repaired. However, gas and electrical facilities of traditional markets cannot be easily replaced because of its high density. And because regular inspections are not conducted, management of facilities is on very poor condition. In addition, when a fire occurs in a traditional market, the fire easily spreads to nearby stores and is likely to spread to a large fire because of a lot of highly flammable substances. Smoke detectors and heat detectors are installed in most traditional markets to monitor fires, but malfunctions are frequent due to the nature of smoke detectors and heat detectors, and network facilities are not properly maintained. Therefore, in this study, gas detection sensors and flame detectors are additionally installed in Gwangmyeong Traditional Market, and a digital twin-based traditional market fire monitoring system is implemented in conjunction with existing sensors in the market's 3D model. With this digital twin based fire monitoring system, we can reduce the malfunctions of fire detect sensors, and can easily guide the evacuation route.

Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat (모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석)

  • Bo-Youp Choi;Chang-Ryeon Son;Joon-Sik Son;Min-Ho Park;Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.

Investigation of the Cryogenic Performance of the High Density Polyurethane Foam (고밀도 폴리우레탄 폼의 극저온 성능 분석)

  • Jeong-Hyeon Kim;Jeong-Dae Kim;Tae-Wook Kim;Seul-Kee Kim;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1289-1295
    • /
    • 2023
  • Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.

Experimental study on Thermal Comfort of Electric Vehicle Occupants Using Local Proximity Heating Module (국부 근접 난방 모듈을 이용한 전기차 탑승자의 열쾌적성에 대한 실험적 연구)

  • Chae-Yeol Lee;Jong-Han Im;Jae-Wook Lee;Sang-Hee Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.655-663
    • /
    • 2024
  • In order to meet the technological demand for indoor heating systems that ensure winter thermal comfort during the transition from internal combustion engines to electrification, a localized proximity heating module using surface heating elements was developed. The operational performance of heating module was tested in the low temperature chamber. The experiment conditions were varied by changing the chamber temperature (-10, 0℃), the air flow rate (6.2, 6.0, 4.2m3/h), the heater power (100, 80, 60, 40W). Thermal comfort model was confirmed using the CBE Thermal Comfort Tool applying ASHRAE standard 55. Under -10℃ condition, thermal comfort was satisfied at 23.4, 23.2℃ at power of 100W and air flow rate 6.0, 4.6m3/h. Under 0℃ condition, at power of 80W, air flow rate 6.2, 6.0m3/h, and at power of 60W, air flow rate 4.6m3/h showed results of 25.7, 26.1, 23.0℃, respectively, satisfying thermal comfort. This study analyzed the operating performance of the local proximity heating module in the low temperature chamber and applied thermal comfort model to prove applicability of local proximity heating module using surface heating elements and how to utilize the thermal comfort model.

Factors Influencing Infection Control Performance by Children's Hospital Nurses Infection Control Organizational Culture and Infection Prevention Environment (아동병원 간호사의 감염관리조직문화, 감염예방환경이 감염관리 수행에 미치는 영향)

  • Hyun-Mi Yang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.675-684
    • /
    • 2024
  • The purpose of the study is to determine the relationship between the infection control organizational culture, infection prevention environment, and infection control performance of nurses at a children's hospital and to identify factors affecting infection control performance. The subjects of the study were 160 nurses from five children's hospitals, and data collection was conducted from February 19 to 29, 2024. Data analysis was performed using frequency, percentage, mean, standard deviation, and difference analysis of variables using t-test, ANOVA, Pearson's correlation analysis, and multiple regression analysis. As a result of the study, infection control performance was positively correlated with infection control organizational culture (r= .610, p< .001) and infection prevention environment (r= .586, p< .001), and as a result of multiple regression analysis, infection control organization The influencing factors appeared in the following order: culture (β= .369), infection prevention environment (β= .312), medical institution accreditation evaluation experience (β= .165), and infection control education experience (β= .137), and the overall explanatory power was It was 50.8% (F=41.966, p< .001). Based on the results of this study, to carry out infection control in children's hospitals, integrated management including the will and effort of individual nurses, support and policy from medical institutions and the government is needed, and the development of an infection control education program that takes into account the special characteristics of children's hospital nurses. Application is necessary.

Scientometrics-based R&D Topography Analysis to Identify Research Trends Related to Image Segmentation (이미지 분할(image segmentation) 관련 연구 동향 파악을 위한 과학계량학 기반 연구개발지형도 분석)

  • Young-Chan Kim;Byoung-Sam Jin;Young-Chul Bae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.563-572
    • /
    • 2024
  • Image processing and computer vision technologies are becoming increasingly important in a variety of application fields that require techniques and tools for sophisticated image analysis. In particular, image segmentation is a technology that plays an important role in image analysis. In this study, in order to identify recent research trends on image segmentation techniques, we used the Web of Science(WoS) database to analyze the R&D topography based on the network structure of the author's keyword co-occurrence matrix. As a result, from 2015 to 2023, as a result of the analysis of the R&D map of research articles on image segmentation, R&D in this field is largely focused on four areas of research and development: (1) researches on collecting and preprocessing image data to build higher-performance image segmentation models, (2) the researches on image segmentation using statistics-based models or machine learning algorithms, (3) the researches on image segmentation for medical image analysis, and (4) deep learning-based image segmentation-related R&D. The scientometrics-based analysis performed in this study can not only map the trajectory of R&D related to image segmentation, but can also serve as a marker for future exploration in this dynamic field.

Development of Highly Efficient Oil-Water Separation Materials Utilizing the Self-Bonding and Microstructuring Characteristics of Aluminum Nitride Nanopowders (질화알루미늄 나노분말의 자가 접착과 미세구조화 특성을 활용한 고효율 유수분리 소재 개발)

  • Heon-Ju Choi;Handong Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.601-607
    • /
    • 2024
  • The discharge of oily wastewater into water bodies and soil poses a serious hazard to the environment and public health. Various conventional techniques have been employed to treat oil-water mixtures and emulsions; Unfortunately, these approaches are frequently expensive, time-consuming, and unsatisfactory outcomes. Porous materials and adsorbents are commonly used for purification, but their use is limited by low separation efficiencies and the risk of secondary contamination. Recent advancements in nanotechnology have driven the development of innovative materials and technologies for oil-contaminated wastewater treatment. Nanomaterials can offer enhanced oil-water separation properties due to their high surface area and tunable surface chemistry. The fabrication of nanofiber membranes with precise pore sizes and surface properties can further improve separation efficiency. Notably, novel technologies have emerged utilizing nanomaterials with special surface wetting properties, such as superhydrophobicity, to selectively separate oil from oil-water mixtures or emulsions. These special wetting surfaces are promising for high-efficiency oil separation in emulsions and allow the use of materials with relatively large pores, enhancing throughput and separation efficiency. In this study, we introduce a facile and scalable method for fabrication of superhydrophobic-superoleophilic felt fabrics for oil/water mixture and emulsion separation. AlN nanopowders are hydrolyzed to create the desired microstructures, which firmly adhere to the fabric surface without the need for a binder resin, enabling specialized wetting properties. This approach is applicable regardless of the material's size and shape, enabling efficient separation of oil and water from oil-water mixtures and emulsions. The oil-water separation materials proposed in this study exhibit low cost, high scalability, and efficiency, demonstrating their potential for broad industrial applications.