• 제목/요약/키워드: KRG

검색결과 201건 처리시간 0.026초

Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser157) and dephosphorylation of PI3K and Akt

  • Kwon, Hyuk-Woo;Shin, Jung-Hae;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.76-85
    • /
    • 2016
  • Background: Binding of adhesive proteins (i.e., fibrinogen, fibronectin, vitronectin) to platelet integrin glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}3$) by various agonists (thrombin, collagen, adenosine diphosphate) involve in strength of thrombus. This study was carried out to evaluate the antiplatelet effect of total saponin from Korean Red Ginseng (KRG-TS) by investigating whether KRG-TS inhibits thrombin-induced binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$. Methods: We investigated the effect of KRG-TS on phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and dephosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt, affecting binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$, and clot retraction. Results: KRG-TS had an antiplatelet effect by inhibiting the binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$ via phosphorylation of VASP ($Ser^{157}$), and dephosphorylation of PI3K and Akt on thrombin-induced platelet aggregation. Moreover, A-kinase inhibitor Rp-8-Br-cyclic adenosine monophosphates (cAMPs) reduced KRG-TS-increased VASP ($Ser^{157}$) phosphorylation, and increased KRG-TS-inhibited fibrinogen-, and fibronectin-binding to ${\alpha}IIb/{\beta}3$. These findings indicate that KRG-TS interferes with the binding of fibrinogen and fibronectin to ${\alpha}IIb/{\beta}3$ via cAMP-dependent phosphorylation of VASP ($Ser^{157}$). In addition, KRG-TS decreased the rate of clot retraction, reflecting inhibition of ${\alpha}IIb/{\beta}3$ activation. In this study, we clarified ginsenoside Ro (G-Ro) in KRG-TS inhibited thrombin-induced platelet aggregation via both inhibition of $[Ca^{2+}]_i$ mobilization and increase of cAMP production. Conclusion: These results strongly indicate that KRG-TS is a beneficial herbal substance inhibiting fibrinogen-, and fibronectin-binding to ${\alpha}IIb/{\beta}3$, and clot retraction, and may prevent platelet ${\alpha}IIb/{\beta}3$-mediated thrombotic disease. In addition, we demonstrate that G-Ro is a novel compound with antiplatelet characteristics of KRG-TS.

Effects of Korean Red Ginseng extract on tissue plasminogen activator and plasminogen activator inhibitor-1 expression in cultured rat primary astrocytes

  • Ko, Hyun Myung;Joo, So Hyun;Kim, Pitna;Park, Jin Hee;Kim, Hee Jin;Bahn, Geon Ho;Kim, Hahn Young;Lee, Jongmin;Han, Seol-Heui;Shin, Chan Young;Park, Seung Hwa
    • Journal of Ginseng Research
    • /
    • 제37권4호
    • /
    • pp.401-412
    • /
    • 2013
  • Korean Red Ginseng (KRG) is an oriental herbal preparation obtained from Panax ginseng Meyer (Araliaceae). To expand our understanding of the action of KRG on central nervous system (CNS) function, we examined the effects of KRG on tissue plasminogen activator (tPA)/plasminogen activator inhibitor-1 (PAI-1) expression in rat primary astrocytes. KRG extract was treated in cultured rat primary astrocytes and neuron in a concentration range of 0.1 to 1.0 mg/mL and the expression of functional tPA/PAI-1 was examined by casein zymography, Western blot and reverse transcription-polymerase chain reaction. KRG extracts increased PAI-1 expression in rat primary astrocytes in a concentration dependent manner (0.1 to 1.0 mg/mL) without affecting the expression of tPA itself. Treatment of 1.0 mg/mL KRG increased PAI-1 protein expression in rat primary astrocytes to $319.3{\pm}65.9%$ as compared with control. The increased PAI-1 expression mediated the overall decrease in tPA activity in rat primary astrocytes. Due to the lack of PAI-1 expression in neuron, KRG did not affect tPA activity in neuron. KRG treatment induced a concentration dependent activation of PI3K, p38, ERK1/2, and JNK in rat primary astrocytes and treatment of PI3K or MAPK inhibitors such as LY294002, U0126, SB203580, and SP600125 (10 ${\mu}M$ each), significantly inhibited 1.0 mg/mL KRG-induced expression of PAI-1 and down-regulation of tPA activity in rat primary astrocytes. Furthermore, compound K but not other ginsenosides such as Rb1 and Rg1 induced PAI-1 expression. KRG-induced up-regulation of PAI-1 in astrocytes may play important role in the regulation of overall tPA activity in brain, which might underlie some of the beneficial effects of KRG on CNS such as neuroprotection in ischemia and brain damaging condition as well as prevention or recovery from addiction.

Anti-aging effects of Korean Red Ginseng (KRG) in differentiated embryo chondrocyte (DEC) knockout mice

  • Nam, Youn Hee;Jeong, Seo Yule;Kim, Yun Hee;Rodriguez, Isabel;Nuankaew, Wanlapa;Bhawal, Ujjal K.;Hong, Bin Na;Kang, Tong Ho
    • Journal of Ginseng Research
    • /
    • 제45권1호
    • /
    • pp.183-190
    • /
    • 2021
  • Background: The circadian rhythm is the internal clock that controls sleep-wake cycles, metabolism, cognition, and several processes in the body, and its disruption has been associated with aging. The differentiated embryo chondrocyte (Dec) gene is related to circadian rhythm. To our knowledge, there are no reports of the relationship between dec gene expression and KRG effect. Therefore, we treated Dec gene knockout (KO) aging mice with KRG to study anti-aging related effects and possible mechanisms. Methods: We evaluated KRG and expression of Dec genes in an ototoxicity model. Dec genes expression in livers of aging mice was further analyzed. Then, we assessed the effects of DEC KO on hearing function in mice by ABR. Finally, we performed DNA microarray to identify KRG-related gene expression changes in mouse liver and assessed the results using KEGG analysis. Results: KRG decreased the expression of Dec genes in ototoxicity model, which may contribute to its anti-aging efficacy. Moreover, KRG suppressed Dec genes expression in liver of wild type indicating inhibition of senescence. ABR test indicated that KRG improved auditory function in aging mouse, demonstrating KRG efficacy on aging related diseases. Conclusion: Finally, in KEGG analysis of 238 genes that were activated and 158 that were inhibited by KRG in DEC KO mice, activated genes were involved in proliferation signaling, mineral absorption, and PPAR signaling whereas the inhibited genes were involved in arachidonic acid metabolism and peroxisomes. Our data indicate that inhibition of senescence-related Dec genes may explain the anti-aging efficacy of KRG.

Effects of EGb 761 and Korean Red Ginseng on Melanogenesis in B16F10 Melanoma Cells and Protection Against UVB Irradiation in Murine Skin

  • Han, Seon-Kyu;Choi, Wook-Hee;Ann, Hyoung-Soo;Ahn, Ryoung-Me;Yi, Seh-Yoon
    • Molecular & Cellular Toxicology
    • /
    • 제4권1호
    • /
    • pp.85-91
    • /
    • 2008
  • These days there is a constant possibility of exposure to UV radiation which can cause abnormal production of melanin and result in skin disease such as hyperpigmentation and melanoma. Many materials were investigated for skin whitening and protection against UV radiation. In this study, we assessed the melanogenesis inhibitory activities of Korean Red Ginseng (KRG, Ginseng Radix Rubra) and Ginkgo (EGb 761 Ginkgo Biloba) in an attempt to develop a new skin whitening agent derived from natural products. B16F10 melanoma cells were treated for 48 hr with KRG and EGb 761. The inhibitory effect on melanogenesis was measured and related cytokines and proteins expression were also investigated by RT-PCR and Western blotting. In addition, we also assessed the effects of these substances on the skin of C57BL/6 mice. Cell growth, melanin content and tyrosinase activity were inhibited effectively in B16F10 melanoma cells treated with KRG and EGb 761. Moreover, tyrosinase mRNA expression was inhibited clearly and melanogenesis related proteins (MRPs) containing tyrosinase, TRP1 and TRP2 were also reduced by KRG and EGb761, while cytokines such as IL-$1{\beta}$ and IL-6 were induced. In the case of UV irradiated mice, we observed induction of cytokine mRNA levels and reduction of MRPs mRNA expression. In addition, a decrease in pigmentation from treatment with KRG and EGb 761 on the skin of mice was observed. These results indicate that KRG and EGb 761 inhibit melanogenesis in B16F10 cells and have display protective activities against UVB. Therefore, we suggest that KRG and EGb 761 are good candidates to be used as whitening agents and UVB protectors for the skin.

Effect of Korean Red Ginseng treatment on the gene expression profile of diabetic rat retina

  • Yang, Hana;Son, Gun Woo;Park, Hye Rim;Lee, Seung Eun;Park, Yong Seek
    • Journal of Ginseng Research
    • /
    • 제40권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Background: Korean Red Ginseng (KRG) is a herbal medicine used in Asian countries and is very popular for its beneficial biological properties. Diabetes mellitus (DM) and its complications are rapidly becoming a global public health concern. The literature on transcriptional changes induced by KRG in rat models of diabetic retinopathy is limited. Considering these facts, we designed this study to determine whether retinopathy-associated genes are altered in retinas of rats with DM and whether the induced changes are reversed by KRG. Methods: Male Sprague-Dawley rats were intravenously injected with streptozotocin (50 mg/kg body weight) to induce DM, following which, KRG powder (200 mg/kg body weight) was orally administered to the KRG-treated DM rat group for 10 wks. The rats were then sacrificed, and their retinas were harvested for total RNA extraction. Microarray gene expression profiling was performed on the extracted RNA samples. Results: From among > 31,000 genes investigated, the expression of 268 genes was observed to be upregulated and that of 58 genes was downregulated, with twofold altered expression levels in the DM group compared with those in the control group. Moreover, 39 genes were upregulated more than twofold and 84 genes were downregulated in the KRG-treated group compared to the DM group. The expression of the genes was significantly reversed by KRG treatment; some of these genes were analyzed further to verify the results of the microarray experiments. Conclusion: Taken together, our data suggest that reversed changes in the gene expression may mediate alleviating activities of KRG in rats with diabetic retinopathy.

Efficacy of Korean Red Ginseng by Single Nucleotide Polymorphism in Obese Women: Randomized, Double-blind, Placebo-controlled Trial

  • Kwon, Dong-Hyun;Bose, Shambhunath;Song, Mi-Young;Lee, Myeong-Jong;Lim, Chi-Yeon;Kwon, Bum-Sun;Kim, Ho-Jun
    • Journal of Ginseng Research
    • /
    • 제36권2호
    • /
    • pp.176-189
    • /
    • 2012
  • This study examined the effects of Korean red ginseng (KRG) on obese women and aimed to confirm that the effects of KRG on obesity differ dependently on a gene. Fifty obese women were recruited and randomized to receive KRG (n=24) or placebo (n=26) for 8 wk. Measurements of blood pressure, height, weight, waist circumference, waist-hip ratio (WHR), total fat mass, percentage of body fat, resting metabolic rate, basal body temperature, and daily food intake (FI), blood test (serum lipid, liver and renal function), Korean version of obesity-related quality of life scale (KOQOL), and a gene examination were performed. Comparisons of subjects before and after the administration of KRG revealed significant improvements of obesity in terms of weight, body mass index (BMI), WHR, FI, and KOQOL. However, in the comparison between KRG group and placebo group, only KOQOL was significantly different. KRG displayed significant efficacy on BMI and KOQOL in the CT genotype of the G protein beta 3 gene, but not in the CC genotype, on blood sugar test in the Trp64/Arg genotype of the beta 3 adrenergic receptor gene, but not in Trp64/Trp genotype, on KOQOL in the DD genotype of the angiotensin I converting enzyme gene, but not in the ID and DD genotypes. The effects of KRG on obesity were confirmed to some extent. However, a distinct effect compared to placebo was not confirmed. KRG is more effective for improving the secondary issues of the quality of life derived from obesity rather than having direct effects on the obesity-related anthropometric assessment and blood test indices.

Proteomic change by Korean Red Ginseng in the substantia nigra of a Parkinson's disease mouse model

  • Kim, Dongsoo;Kwon, Sunoh;Jeon, Hyongjun;Ryu, Sun;Ha, Ki-Tae;Kim, Seungtae
    • Journal of Ginseng Research
    • /
    • 제42권4호
    • /
    • pp.429-435
    • /
    • 2018
  • Background: Recent studies have shown that Korean Red Ginseng (KRG) successfully protects against dopaminergic neuronal death in the nigrostriatal pathway of a Parkinson's disease (PD) mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration; however, the mechanism has yet to be identified. Therefore, in this study we used two-dimensional electrophoresis to investigate the effects of KRG on the changes in protein expression in the substantia nigra (SN) of MPTP-treated mice. Methods: Male C57BL/6 mice (9 wk old) were intraperitoneally administered MPTP (20 mg/kg) four times at 2-h intervals, after which KRG (100 mg/kg) was orally administered once a day for 5 d. Two hours after the fifth KRG administration, a pole test was conducted to evaluate motor function, after which the brains were immediately collected. Survival of dopaminergic neurons was measured by immunohistochemistry, and protein expression was measured by two-dimensional electrophoresis and Western blotting. Results: KRG alleviated MPTP-induced behavioral dysfunction and neuronal toxicity in the SN. Additionally, the expression of eight proteins related to neuronal formation and energy metabolism for survival were shown to have changed significantly in response to MPTP treatment or KRG administration. KRG alleviated the downregulated protein expression following MPTP administration, indicating that it may enhance neuronal development and survival in the SN of MPTP-treated mice. Conclusion: These findings indicate that KRG may have therapeutic potential for the treatment of patients with PD.

Protective Effect of Korean Red Ginseng against Aflatoxin B1-Induced Hepatotoxicity in Rat

  • Kim, Yong-Seong;Kim, Yong-Hoon;Noh, Jung-Ran;Cho, Eun-Sang;Park, Jong-Ho;Son, Hwa-Young
    • Journal of Ginseng Research
    • /
    • 제35권2호
    • /
    • pp.243-249
    • /
    • 2011
  • Korean red ginseng (KRG), the steamed root of Panax ginseng Meyer, has a variety of biological properties, including anti-inflammatory, antioxidant and anticancer effects. Aflatoxin $B_1$ ($AFB_1$) produced by the Aspergillus spp. causes acute hepatotoxicity by lipid peroxidation and oxidative DNA damage, and induces liver carcinoma in humans and laboratory animals. This study was performed to examine the protective effects of KRG against hepatotoxicity induced by $AFB_1$ using liver-specific serum marker analysis, histopathology, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. In addition, to elucidate the possible mechanism of hepatoprotective effects, superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde were analyzed. Rats were treated with 250 mg/kg of KRG (KRG group) or saline ($AFB_1$ group) for 4 weeks and then received 150 ${\mu}g/kg$ of $AFB_1$ intraperitoneally for 3 days. Rats were sacrificed at 12 h, 24 h, 48 h, 72 h, or 1 wk after $AFB_1$ treatment. In the KRG pre-treatment group, serum alanine aminotransferase, aspartate aminotransferase, and malondialdehyde levels were low, but superoxide dismutase, catalase, and glutathione peroxidase activities were high as compared to the $AFB_1$ alone group. Histopathologically, $AFB_1$ treatment induced necrosis and apoptosis in hepatocytes, and led to inflammatory cells infiltration in the liver. KRG pre-treatment ameliorated these changes. These results indicate that KRG may have protective effects against hepatotoxicity induced by $AFB_1$ that involve the antioxidant properties of KRG.

Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice

  • Kim, Jin Kyeong;Shin, Kon Kuk;Kim, Haeyeop;Hong, Yo Han;Choi, Wooram;Kwak, Yi-Seong;Han, Chang-Kyun;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.717-725
    • /
    • 2021
  • Background: Korean Red Ginseng (KRG) is a traditional herb that has several beneficial properties including anti-aging, anti-inflammatory, and autophagy regulatory effects. However, the mechanisms of these effects are not well understood. In this report, the underlying mechanisms of anti-inflammatory and autophagy-promoting effects were investigated in aged mice treated with KRG-water extract (WE) over a long period. Methods: The mechanisms of anti-inflammatory and autophagy-promoting activities of KRG-WE were evaluated in kidney, lung, liver, stomach, and colon of aged mice using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and western blot analysis. Results: KRG-WE significantly suppressed the mRNA expression levels of inflammation-related genes such as interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)- α, monocyte chemoattractant protein-1 (MCP-1), and IL-6 in kidney, lung, liver, stomach, and colon of the aged mice. Furthermore, KRG-WE downregulated the expression of transcription factors and their protein levels associated with inflammation in lung and kidney of aged mice. KRG-WE also increased the expression of autophagy-related genes and their protein levels in colon, liver, and stomach. Conclusion: The results suggest that KRG can suppress inflammatory responses and recover autophagy activity in aged mice.

Neuroprotective effect of Korean Red Ginseng against single prolonged stress-induced memory impairments and inflammation in the rat brain associated with BDNF expression

  • Lee, Bombi;Sur, Bongjun;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.435-443
    • /
    • 2022
  • Background: Post-traumatic stress disorder (PTSD) is a psychiatric disease that develops following exposure to a traumatic event and is a stress-associated mental disorder characterized by an imbalance of neuroinflammation. Korean Red Ginseng (KRG) is the herbal supplement that is known to be involved in a variety of pharmacological activities. We aimed to investigate the effects of KRG on neuroinflammation as a potential mechanism involved in single prolonged stress (SPS) that negatively influences memory formation and consolidation and leads to cognitive and spatial impairment by regulating BDNF signaling, synaptic proteins, and the activation of NF-κB. Methods: We analyzed the cognitive and spatial memory, and inflammatory cytokine levels during the SPS procedure. SPS model rats were injected intraperitoneally with 20, 50, or 100 mg/kg/day KRG for 14 days. Results: KRG administration significantly attenuated the cognitive and spatial memory deficits, as well as the inflammatory reaction in the hippocampus associated with activation of NF-κB in the hippocampus induced by SPS. Moreover, the effects of KRG were equivalent to those exerted by paroxetine. In addition, KRG improved the expression of BDNF mRNA and the synaptic protein PSD-95 in the hippocampus. Taken together, these findings demonstrate that KRG exerts memory-improving actions by regulating anti-inflammatory activities and the NF-κB and neurotrophic pathway. Conclusion: Our findings suggest that KRG is a potential functional ingredient for protecting against memory deficits in mental diseases, such as PTSD.