• Title/Summary/Keyword: KOSPI Market

Search Result 309, Processing Time 0.023 seconds

The Impact of Information on Stock Message Boards on Stock Trading Behaviors of Individual Investors based on Order Imbalance Analysis (온라인 주식게시판 정보가 주식투자자의 거래행태에 미치는 영향)

  • Kim, Hyun Mo;Park, Jae Hong
    • Information Systems Review
    • /
    • v.18 no.2
    • /
    • pp.23-38
    • /
    • 2016
  • Previous studies on information systems (IS) and finance suggest that information on stock message boards influence the investment decisions of individual investors. However, how information on online stock message boards influences an individual investor's buy or sell decisions is unclear. To address this research question, we investigate the relationship between a number of posts on stock message boards and order imbalance in stock markets. Order imbalance is defined as the difference between the daily sum of buy-side shares traded and the daily sum of sell-side shares traded. Therefore, order imbalance can suggest the direction of trades and the strength of the direction with trading volumes. In this regard, this study examines how the number of posts (information on stock message boards) influences order imbalance (stock trading behavior). We collected about 46,077 messages of 40 companies on the Korea Composite Stock Price Index from Paxnet, the most popular Korean online stock message board. The messages we collected were divided based on in-trading and after-trading hours to examine the relationship between the numbers of posts and trading volumes. We also collected order imbalance data on individual investors. We then integrated the balanced panel data sets and analyzed them through vector regression. We found that the number of posts on online stock message boards is positively related to prior order imbalance. We believe that our findings contribute to knowledge in IS and finance. Furthermore, this study suggests that investors should carefully monitor information on stock message boards to understand stock market sentiments.

Approximation of π by financial historical data (금융시계열자료를 이용한 원주율값 π의 추정)

  • Jang, Dae-Heung;Uhm, TaeWoong;Yi, Seongbaek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.831-841
    • /
    • 2017
  • The irrational number ${\pi}$ is defined as the ratio of circumference of a circle to its radius and always becomes constant. This article does Monte Carlo approximation of its value using the famous Buffon's needle experiment and shows that its convergence is not always proportional to the sample size. We also do Monte Carlo simulations to see the convergence of the computed ${\pi}$ values from the random walk series with independent normal increment. Finally we apply the theoretical derivation to various financial time series data such as KOSPI, stock prices of Korean big firms, global stock indices and major foreign exchange rates. The historical data shows that log transformed data random walk process but most of their first lagged data don't follow a normal distribution. More importantly the computed value from the ratio of the regression coefficient ${\pi}$ tend to converge a constant, unfortunately not ${\pi}$. Using this result we could doubt on the efficient market hypothesis, and relate the degree of the hypothesis with the amount of deviation of the estimated ${\pi}$ values.

Industry Analyses on the Research & Development Expenditures for Korean Chaebol Firms (국내 재벌 계열사들의 연구개발비에 대한 재무적 산업효과 분석)

  • Kim, Hanjoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.379-389
    • /
    • 2019
  • The study empirically investigates financial factors that may influence on corporate R&D intensity during the post-era of the global financial turmoil (from 2010 to 2015) to mitigate possible spillover effect associated with the crisis. Concerning the empirical research settings of the study, chaebol firms listed in the KOSPI stock market are used as sample data with adopting various econometric estimation methods to enhance validity of the results. In the first hypothesis test, it is found that there exist inter-industry financial differences in terms of the ratio of R&D expenditure across all the sample years, but the statistical differences may arise from only a few domestic industries beloning to the high-growth sector. Moreover, it is also interesting to identify that, for the high-tech sector, 3 explanatory variables such as R&D intensity in a prior year, firm size and change in cash holdings are proved to be financial factors to discriminate between chaebol firms and their counterparts of non-chaebol firms, whereas a proportion of tangible assets over total assets as well as the former two variables are shown to be significant factors on the R&D intensity for the low-tech sector.

Cash Retention and Firm Value of Entertainment Enterprises (엔터테인먼트 기업의 현금보유가 기업가치에 미치는 영향에 관한 연구)

  • Kim, Nam-Gon;Kim, Jee-Hyun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.6
    • /
    • pp.55-70
    • /
    • 2021
  • This study investigates the following important financial questions using entertainment enterprises: 1) how does cash reserve affect a firm's financial value? 2) what factors influence the level of cash retention of a firm? For empirical tests, we use accounting and financial data of entertainment companies listed in the KOSPI and KOSDAQ markets for a long-term time period covering from 2000 to 2018. The main findings of this paper are as follows: First, entertainment companies maintain higher level of cash holdings compared to non-entertainment companies. Second, the cash holdings of entertainment enterprises have positive influence on firms' financial value. Third, among various firm characteristics known for affecting the cash holdings level, leverage and profitability exhibit strong relationships in entertainment enterprises. Entertainment firms with lower leverage and higher profitability tend to reserve more cash inside them. These findings suggest that entertainment companies are highly valued by stock market participants as having prospective opportunities, thus, firms with sufficient cash holdings tend to have higher firm value. In addition, these findings imply that cash in entertainment enterprises functions as a substitute for debts and the cash holdings are less likely driven by agency problems.

ESG Activities and Costs of Debt Capital of Shipping Companies (해운기업의 ESG 활동과 타인자본비용)

  • Soon-Wook Hong
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.200-205
    • /
    • 2024
  • This paper examines the impact of ESG activities of domestic shipping companies on the cost of debt. It is known that companies with large information asymmetry tend to have high costs of debt. Corporate ESG activities have been identified as an effective means of reducing information asymmetry. By actively engaging in ESG activities, companies can lower the cost of debt by reducing information asymmetry. Therefore, this study aims to investigate whether these mechanisms, which have been observed in previous studies, also apply to domestic shipping companies. Multiple regression analysis is conducted on KOSP I-listed shipping companies from2010 to 2022. The cost of debt is set as the dependent variable, while the ESG rating is used as the explanatory variable. The analysis reveals that companies with a high level of ESG activities generally have a lower cost of debt. However, it is important to note that ESG activities of shipping companies do not seem to have a significant impact on their cost of debt. In fact, the level of ESG activities among domestic shipping companies is not particularly high (Hong, 2024). Despite these findings, domestic shipping companies should still strive for sustainable management to adapt to the rapidly changing business environment and meet the demands of the modern era. ESG management is a representative method for achieving sustainability. Therefore, shipping companies should not only focus on reducing the cost of debt but also on opening up the closed industry culture and communicating with capital market participants for sustainable growth. It is crucial for these companies to listen to the voices of stakeholders and embrace a holistic approach to sustainability.

Optimization of Support Vector Machines for Financial Forecasting (재무예측을 위한 Support Vector Machine의 최적화)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.241-254
    • /
    • 2011
  • Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don't require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level.

Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news (온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측)

  • Jeong, Ji Seon;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.37-51
    • /
    • 2015
  • Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, 'energy/chemical', 'consumer goods for living' and 'consumer discretionary' showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as 'information technology' and 'shipbuilding/transportation' industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as 'Kangwon Land', 'KT & G' and 'SK Innovation' showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as 'Young Poong', 'LG', 'Samsung Life Insurance', and 'Doosan' had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.

Dynamic forecasts of bankruptcy with Recurrent Neural Network model (RNN(Recurrent Neural Network)을 이용한 기업부도예측모형에서 회계정보의 동적 변화 연구)

  • Kwon, Hyukkun;Lee, Dongkyu;Shin, Minsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.139-153
    • /
    • 2017
  • Corporate bankruptcy can cause great losses not only to stakeholders but also to many related sectors in society. Through the economic crises, bankruptcy have increased and bankruptcy prediction models have become more and more important. Therefore, corporate bankruptcy has been regarded as one of the major topics of research in business management. Also, many studies in the industry are in progress and important. Previous studies attempted to utilize various methodologies to improve the bankruptcy prediction accuracy and to resolve the overfitting problem, such as Multivariate Discriminant Analysis (MDA), Generalized Linear Model (GLM). These methods are based on statistics. Recently, researchers have used machine learning methodologies such as Support Vector Machine (SVM), Artificial Neural Network (ANN). Furthermore, fuzzy theory and genetic algorithms were used. Because of this change, many of bankruptcy models are developed. Also, performance has been improved. In general, the company's financial and accounting information will change over time. Likewise, the market situation also changes, so there are many difficulties in predicting bankruptcy only with information at a certain point in time. However, even though traditional research has problems that don't take into account the time effect, dynamic model has not been studied much. When we ignore the time effect, we get the biased results. So the static model may not be suitable for predicting bankruptcy. Thus, using the dynamic model, there is a possibility that bankruptcy prediction model is improved. In this paper, we propose RNN (Recurrent Neural Network) which is one of the deep learning methodologies. The RNN learns time series data and the performance is known to be good. Prior to experiment, we selected non-financial firms listed on the KOSPI, KOSDAQ and KONEX markets from 2010 to 2016 for the estimation of the bankruptcy prediction model and the comparison of forecasting performance. In order to prevent a mistake of predicting bankruptcy by using the financial information already reflected in the deterioration of the financial condition of the company, the financial information was collected with a lag of two years, and the default period was defined from January to December of the year. Then we defined the bankruptcy. The bankruptcy we defined is the abolition of the listing due to sluggish earnings. We confirmed abolition of the list at KIND that is corporate stock information website. Then we selected variables at previous papers. The first set of variables are Z-score variables. These variables have become traditional variables in predicting bankruptcy. The second set of variables are dynamic variable set. Finally we selected 240 normal companies and 226 bankrupt companies at the first variable set. Likewise, we selected 229 normal companies and 226 bankrupt companies at the second variable set. We created a model that reflects dynamic changes in time-series financial data and by comparing the suggested model with the analysis of existing bankruptcy predictive models, we found that the suggested model could help to improve the accuracy of bankruptcy predictions. We used financial data in KIS Value (Financial database) and selected Multivariate Discriminant Analysis (MDA), Generalized Linear Model called logistic regression (GLM), Support Vector Machine (SVM), Artificial Neural Network (ANN) model as benchmark. The result of the experiment proved that RNN's performance was better than comparative model. The accuracy of RNN was high in both sets of variables and the Area Under the Curve (AUC) value was also high. Also when we saw the hit-ratio table, the ratio of RNNs that predicted a poor company to be bankrupt was higher than that of other comparative models. However the limitation of this paper is that an overfitting problem occurs during RNN learning. But we expect to be able to solve the overfitting problem by selecting more learning data and appropriate variables. From these result, it is expected that this research will contribute to the development of a bankruptcy prediction by proposing a new dynamic model.