• Title/Summary/Keyword: KOMPSAT-2/3

Search Result 288, Processing Time 0.021 seconds

Conceptual Design of Structure Subsystem for Geo-stationary Multi-purpose Satellite (정지궤도복합위성 구조계 개념설계)

  • Kim, Chang-Ho;Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Kim, Sung-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.110-115
    • /
    • 2012
  • Satellite structure should be designed to accommodate and support safely the payload and equipments necessary for its own missions and to secure satellite and payloads from severe launch environments. The launch environments imposed on satellites are quasi-static accelerations, aerodynamic loads, acoustic loads and shock loads. Currently KARI(Korea Aerospace Research Institute) is developing Geo-KOMPSAT-2(Geostationary Earth Orbit KOrea Multi-Purpose Satellite) with technologies which were acquired during COMS(Communication, Ocean and Meteorological Satellite) development. As compared to COMS Geo-KOMPSAT-2 requires more propellant due to mass increase of Advanced Meteorological Payload with high resolution and increase of miss life, it is difficult to apply the design concept of COMS to Geo-KOMPSAT-2. This paper deals with conceptual design of Structural Subsystem for Geo-KOMPSAT-2.

Analysis on the Impact of Space Environment on LEO Satellite Orbit (우주환경 변화에 따른 저궤도 위성의 궤도변화 분석)

  • Jung, Okchul;Yim, Hyeonjeong;Kim, Hwayeong;Ahn, Sangil
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.57-62
    • /
    • 2015
  • The satellite orbit is continuously changing due to space environment. Especially for low earth orbit, atmospheric drag plays an important role in the orbit altitude decay. Recently, solar activities are expected to be high, and relevant events are occurring frequently. In this paper, analysis on the impact of geomagnetic storm on LEO satellite orbit is presented. For this, real flight data of KOMPSAT-2, KOMPSAT-3, and KOMPSAT-5 are analyzed by using the daily decay rate of mean altitude is calculated from the orbit determination. In addition, the relationship between the solar flux and geomagnetic index, which are the metrics for solar activities, is statistically analyzed with respect to the altitude decay. The accuracy of orbit prediction with both the fixed drag coefficient and estimated one is examined with the precise orbit data as a reference. The main results shows that the improved accuracy can be achieved in case of using estimated drag coefficient.

Feasibility Assessment of Spectral Band Adjustment Factor of KOMPSAT-3 for Agriculture Remote Sensing (농업관측을 위한 KOMPSAT-3 위성의 Spectral Band Adjustment Factor 적용성 평가)

  • Ahn, Ho-yong;Kim, Kye-young;Lee, Kyung-do;Park, Chan-won;So, Kyu-ho;Na, Sang-il
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1369-1382
    • /
    • 2018
  • As the number of multispectral satellites increases, it is expected that it will be possible to acquire and use images for periodically. However, there is a problem of data discrepancy due to different overpass time, period and spatial resolution. In particular, the difference in band bandwidths became different reflectance even for images taken at the same time and affect uncertainty in the analysis of vegetation activity such as vegetation index. The purpose of this study is to estimate the band adjustment factor according to the difference of bandwidth with other multispectral satellites for the application of KOMPSAT-3 satellite in agriculture field. The Spectral band adjustment factor (SBAF) were calculated using the hyperspectral satellite images acquired in the desert area. As a result of applying SBAF to the main crop area, the vegetation index showed a high agreement rate of relative percentage difference within 3% except for the Hapcheon area where the zenith angle was 25. For the estimation of SBAF, this study used only one set of images, which did not consider season and solar zenith angle of SBAF variation. Therefore, long-term analysis is necessary to solve SBAF uncertainty in the future.

Active Fire Detection Using Landsat 8 OLI Images: A Case of 2019 Australia Fires (Landsat 8 OLI 영상을 이용한 산불탐지: 2019년 호주 산불을 사례로)

  • Kim, Nari;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.775-784
    • /
    • 2020
  • Recent global warming and anthropogenic activities have caused more frequent and massive wildfires with longer durations and more significant damages. MODIS has been monitoring global wildfires for almost 20 years, and GK2A and Himawari-8 are observing the wildfires in East Asia 144 times a day. However, the spatial resolution of 1 to 2 km is not sufficient for the detection of small and medium-size active fires, and therefore the studies on the active fire detection using high-resolution images are essential. However, there is no official product for the high-resolution active fire detection. Hence, we implemented the active fire detection algorithm of Landsat 8 and carried out a high-resolution-based detection of active fires in Australia in 2019, followed by the comparisons with the products of Himawari-8 and MODIS. Regarding the intense fires, the three satellites showed similar results, whereas the weak igniting and extinguishing fires or the fires in narrow areas were detected by only Landsat 8 with a 30m resolution. Small-sized fires, which are the majority in Korea, can be detected by the high-resolution satellites such as Landsat 8, Sentinel-2, Kompsat-3A, and the forthcoming Kompsat-7. Also, a comprehensive analysis together with the geostationary satellites in East Asia such as GK2A, Himawari-8, and Fengyun-3 will help the interoperability and the improvement of spatial and temporal resolutions.

Geolocation Error Analysis of KOMPSAT-5 SAR Imagery Using Monte-Carlo Simulation Method

  • Choi, Yoon Jo;Hong, Seung Hwan;Sohn, Hong Gyoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.71-79
    • /
    • 2019
  • Geolocation accuracy is one of the important factors in utilizing all weather available SAR satellite imagery. In this study, an error budget analysis was performed on key variables affecting on geolocation accuracy by generating KOMPSAT-5 simulation data. To perform the analysis, a Range-Doppler model was applied as a geometric model of the SAR imagery. The results show that the geolocation errors in satellite position and velocity are linearly related to the biases in the azimuth and range direction. With 0.03cm/s satellite velocity biases, the simulated errors were up to 0.054 pixels and 0.0047 pixels in the azimuth and range direction, and it implies that the geolocation accuracy is sensitive in the azimuth direction. Moreover, while the clock drift causes a geolocation error in the azimuth direction, a signal delay causes in the range direction. Monte-Carlo simulation analysis was performed to analyze the influence of multiple geometric error sources, and the simulated error was up to 3.02 pixels in the azimuth direction.

Accuracy Comparison of TOA and TOC Reflectance Products of KOMPSAT-3, WorldView-2 and Pléiades-1A Image Sets Using RadCalNet BTCN and BSCN Data

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.21-32
    • /
    • 2022
  • The importance of the classical theme of how the Top-of-Atmosphere (TOA) and Top-of-Canopy (TOC) reflectance of high-resolution satellite images match the actual atmospheric reflectance and surface reflectance has been emphasized. Based on the Radiometric Calibration Network (RadCalNet) BTCN and BSCN data, this study compared the accuracy of TOA and TOC reflectance products of the currently available optical satellites, including KOMPSAT-3, WorldView-2, and Pléiades-1A image sets calculated using the absolute atmospheric correction function of the Orfeo Toolbox (OTB) tool. The comparison experiment used data in 2018 and 2019, and the Landsat-8 image sets from the same period were applied together. The experiment results showed that the product of TOA and TOC reflectance obtained from the three sets of images were highly consistent with RadCalNet data. It implies that any imagery may be applied when high-resolution reflectance products are required for a certain application. Meanwhile, the processed results of the OTB tool and those by the Apparent Reflection method of another tool for WorldView-2 images were nearly identical. However, in some cases, the reflectance products of Landsat-8 images provided by USGS sometimes showed relatively low consistency than those computed by the OTB tool, with the reference of RadCalNet BTCN and BSCN data. Continuous experiments on active vegetation areas in addition to the RadCalNet sites are necessary to obtain generalized results.

RELIABILITY ANALYSIS OF THE MSC SYSTEM

  • Kim, Young-Soo;Lee, Do-Kyoung;Lee, Chang-Ho;Woo, Sun-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.3
    • /
    • pp.217-226
    • /
    • 2003
  • MSC (Multi-Spectral Camera) is the payload of KOMPSAT-2, which is being developed for earth imaging in optical and near-infrared region. The design of the MSC is completed and its reliability has been assessed from part level to the MSC system level. The reliability was analyzed in worst case and the analysis results showed that the value complies the required value of 0.9. In this paper, a calculation method of reliability for the MSC system is described, and assessment result is presented and discussed.

Semi-Automated Extraction of Geographic Information using KOMPSAT 2 : Analyzing Image Fusion Methods and Geographic Objected-Based Image Analysis (다목적 실용위성 2호 고해상도 영상을 이용한 지리 정보 추출 기법 - 영상융합과 지리객체 기반 분석을 중심으로 -)

  • Yang, Byung-Yun;Hwang, Chul-Sue
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.2
    • /
    • pp.282-296
    • /
    • 2012
  • This study compared effects of spatial resolution ratio in image fusion by Korea Multi-Purpose SATellite 2 (KOMPSAT II), also known as Arirang-2. Image fusion techniques, also called pansharpening, are required to obtain color imagery with high spatial resolution imagery using panchromatic and multi-spectral images. The higher quality satellite images generated by an image fusion technique enable interpreters to produce better application results. Thus, image fusions categorized in 3 domains were applied to find out significantly improved fused images using KOMPSAT 2. In addition, all fused images were evaluated to satisfy both spectral and spatial quality to investigate an optimum fused image. Additionally, this research compared Pixel-Based Image Analysis (PBIA) with the GEOgraphic Object-Based Image Analysis (GEOBIA) to make better classification results. Specifically, a roof top of building was extracted by both image analysis approaches and was finally evaluated to obtain the best accurate result. This research, therefore, provides the effective use for very high resolution satellite imagery with image interpreter to be used for many applications such as coastal area, urban and regional planning.

  • PDF

Derivation and Comparison of Narrow and Broadband Algorithms for the Retrieval of Ocean Color Information from Multi-Spectral Camera on Kompsat-2 Satellite

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Moon, Jeong-Eom
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.173-188
    • /
    • 2005
  • The present study aims to derive and compare narrow and broad bandwidths of ocean color sensor’s algorithms for the study of monitoring highly dynamic coastal oceanic environmental parameters using high-resolution imagery acquired from Multi-spectral Camera (MSC) on KOMPSAT-2. These algorithms are derived based on a large data set of remote sensing reflectances ($R_{rs}$) generated by using numerical model that relates $b_b/(a + b_b)$ to $R_{rs}$ as functions of inherent optical properties, such as absorption and backscattering coefficients of six water components including water, phytoplankton (chl), dissolved organic matter (DOM), suspended sediment (SS) concentration, heterotropic organism (he) and an unknown component, possibly represented by bubbles or other particulates unrelated to the first five components. The modeled $R_{rs}$ spectra appear to be consistent with in-situ spectra collected from Korean waters. As Kompsat-2 MSC has similar spectral characteristics with Landsat-5 Thematic Mapper (TM), the model generated $R_{rs}$ values at 2 ㎚ interval are converted to the equivalent remote sensing reflectances at MSC and TM bands. The empirical relationships between the spectral ratios of modeled $R_{rs}$ and chlorophyll concentrations are established in order to derive algorithms for both TM and MSC. Similarly, algorithms are obtained by relating a single band reflectance (band 2) to the suspended sediment concentrations. These algorithms derived by taking into account the narrow and broad spectral bandwidths are compared and assessed. Findings suggest that there was less difference between the broad and narrow band relationships, and the determination coefficient $(r^2)$ for log-transformed data [ N = 500] was interestingly found to be $(r^2)$ = 0.90 for both TM and MSC. Similarly, the determination coefficient for log-transformed data [ N = 500] was 0.93 and 0.92 for TM and MSC respectively. The algorithms presented here are expected to make significant contribution to the enhanced understanding of coastal oceanic environmental parameters using Multi-spectral Camera.

Validation of Ship Detection by the RADARSAT Synthetic Aperture Radar and KOMPSAT EOC: Field Experiments (RADARSAT SAR와 KOMPSAT EOC에 의한 선박 탐지의 검증: 현장 실험)

  • Yang Chan-Su;Kim Sun-Young
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.43-47
    • /
    • 2004
  • Two different sensors (here, KOMPSAT and RADARSAT) are considered for ship detection, and are used to delineate the detection performance for their data The experiments are set for coastal regions of Mokpo Port and Ulsan Port and field experiments on board pilot boat are conducted to collect in situ ship validation information such as ship type and length This paper introduce mainly the experiment result of ship detection by both RADARSAT SAR imagery and land-based RADAR data, operated by the local Authority of South Korean, so called vessel traffic system (VTS) radar. Fine imagery of Ulsan Port was acquired on June 19, 2004 and in-situ data such as wind speed and direction, taking pictures of ships and natural features were obtained aboard a pilot ship. North winds, with a maximum speed of 3.1 m/s were recorded Ship's position, size and shape and natural features of breakwaters, oil pipeline and alongside ship were compared using SAR and VTS. It is shown that KOMPSAT/EOC has a good performance in the detection of a moving ship at a speed of kts or more an hour that ship and its wake can be imaged. The detection capability of RADARSAT doesn't matter how fast ship is running and depends on a ship itself, e.g. its material, length and type. Our results indicate that SAR can be applicable to automated ship detection for a VTS and SAR combination service.

  • PDF