Browse > Article
http://dx.doi.org/10.7780/kjrs.2022.38.1.2

Accuracy Comparison of TOA and TOC Reflectance Products of KOMPSAT-3, WorldView-2 and Pléiades-1A Image Sets Using RadCalNet BTCN and BSCN Data  

Kim, Kwangseob (Department of Electronics and Information Engineering, Hansung University)
Lee, Kiwon (Department of Electronics and Information Engineering, Hansung University)
Publication Information
Korean Journal of Remote Sensing / v.38, no.1, 2022 , pp. 21-32 More about this Journal
Abstract
The importance of the classical theme of how the Top-of-Atmosphere (TOA) and Top-of-Canopy (TOC) reflectance of high-resolution satellite images match the actual atmospheric reflectance and surface reflectance has been emphasized. Based on the Radiometric Calibration Network (RadCalNet) BTCN and BSCN data, this study compared the accuracy of TOA and TOC reflectance products of the currently available optical satellites, including KOMPSAT-3, WorldView-2, and Pléiades-1A image sets calculated using the absolute atmospheric correction function of the Orfeo Toolbox (OTB) tool. The comparison experiment used data in 2018 and 2019, and the Landsat-8 image sets from the same period were applied together. The experiment results showed that the product of TOA and TOC reflectance obtained from the three sets of images were highly consistent with RadCalNet data. It implies that any imagery may be applied when high-resolution reflectance products are required for a certain application. Meanwhile, the processed results of the OTB tool and those by the Apparent Reflection method of another tool for WorldView-2 images were nearly identical. However, in some cases, the reflectance products of Landsat-8 images provided by USGS sometimes showed relatively low consistency than those computed by the OTB tool, with the reference of RadCalNet BTCN and BSCN data. Continuous experiments on active vegetation areas in addition to the RadCalNet sites are necessary to obtain generalized results.
Keywords
KOMPSAT-3; Pleiades-1A; RadCalNet; TOA and TOC Reflectance; WorldView-2;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Martin, J., F. Eugenio, J. Marcello, A. Medina, and J.A. Bermejo, 2012. Atmospheric correction models for high resolution WorldView-2 multispectral imagery: A case study in Canary Islands, Spain, Proc. of SPIE, Remote Sensing of Clouds and the Atmosphere XVII; and Lidar Technologies, Techniques, and Measurements For Atmospheric Remote Sensing VIII, Edinburgh, UK, Sep. 24-27, vol. 8534, p. 85340O.
2 Alonso, K., M. Bachmann, K. Burch, E. Carmona, D. Cerra, R. de los Reyes, D. Dietrich, U. Heiden, A. Holderlin, J. Ickes, U. Knodt, D. Krutz, H. Lester, R. Muller, M. Pagnutti, P. Reinartz, R. Richter, R. Ryan, I. Sebastian, and M. Tegler, 2019. Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS), Sensors, 19(20): 4471.   DOI
3 Astrium, 2012. Pleiades Imagery User Guide, https://content.satimagingcorp.com/media/pdf/User_Guide_Pleiades.pdf, Accessed on Oct. 20, 2021.
4 Badawi, M., D. Helder, L. Leigh, and X. Jing, 2019. Methodsfor Earth-Observing Satellite Surface Reflectance Validation, Remote Sensing, 11(13): 1543.   DOI
5 Eastman, J. R., 2016. TerrSet Geospatial Monitoring and Modeling System Manual, ClarkLabs, https://clarklabs.org/wp-content/uploads/2016/10/Terrset-Manual.pdf, Accessed on Nov. 20, 2021.
6 Bouvet, M., K. Thome, B. Berthelot, A. Bialek, J. Czapla-Myers, N.P. Fox, P. Goryl, P. Henry, L. Ma, S. Marcq, A. Meygret, B.N. Wenny, and E.R. Woolliams, 2019. RadCalNet: A Radiometric Calibration Network for Earth Observing Imagers Operating in the Visible to Shortwave Infrared Spectral Range, Remote Sensing, 11(20): 2401.   DOI
7 Bouvet, M., 2021. Reference Calibration Validation Networks: RadCalNet, https://earth.esa.int/eogateway/documents/20142/37627/1B2_VHRODA+2021_1B2_RadCalNet_Bouvet_v2.pdf/6a7108c3-75fa-2667-9e49-e16f42cd62c7, Accessed on Nov. 24, 2021.
8 DEAAnalysis Ready Data Phase 1 Validation Project, 2021. https://ecat.ga.gov.au/geonetwork/srv/api/records/3c018288-cb41-41c7-b099-caf6549f578f, Accessed on Oct. 20, 2021.
9 Kim, K. and K. Lee, 2020b. A Validation Experiment of the Reflectance Products of KOMPSAT-3A Based on RadCalNet Data and Its Applicability To Vegetation Indexing, Remote Sensing, 12(23): 3971.   DOI
10 Cui, L., G. Li, H. Ren, L. He, H. Liao, N, Ouyang, and Y. Zhang, 2014. Assessment of atmospheric correction methods for historical Landsat TM images in the coastal zone: A case study in Jiangsu, China, European Journal of Remote Sensing, 47(1): 701-716.   DOI
11 Kim, K. and K. Lee, 2020a. Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Application of RadCalNet Baotou (BTCN) Data, Korean Journalof RemoteSensing,36(6-2): 1509-1521 (in Korean with English abstract).
12 Kim, J., C. Jin, C. Choi, and H. Ahn, 2015. Radiometric characterization and validation for the KOMPSAT-3 sensor, Remote Sensing Letters, 6(7): 529-538.   DOI
13 Lee, H.-S. and K.-S. Lee, 2015. Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors, Korean Journal of Remote Sensing, 31(4): 321-330.   DOI
14 Lee, K., K. Kim, S. Lee, and Y. Kim, 2020.Determination Of the Normalized Difference Vegetation Index (NDVI) with Top-of-Canopy (TOC)Reflectance from a KOMPSAT-3A Image Using Orfeo ToolBox(OTB) Extension, International Journal of Geo-Information, 9(4): 257.   DOI
15 Kuester, M., 2020. Absolute Radiometric Calibration is an Essential Tool to Imagery Science, But What is it?, https://blog.maxar.com/tech-andtradecraft/2020/absolute-radiometric-calibrationis-an-essential-tool-to-imagery-science-butwhat-is-it, Accessed on Oct. 20, 2021.
16 Lee, K. and K. Kim, 2019.An Experiment for Surface Reflectance Image Generation of KOMPSAT 3AImage Data by Open Source Implementation, Korean Journal of Remote Sensing, 35(6-4): 1327-1339 (in Korean with English abstract).   DOI
17 Lee, K. and K. Kim, 2020. Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Using RadCalNet Data, Korean Journal Of Remote Sensing, 36(2-1): 167-178 (in Korean with English abstract).   DOI
18 Ma, L., Y. Zhao, E. R. Woolliams, C. Dai, N. Wang, Y. Liu, L. Li, X. Wang, C. Gao, C. Li, and L. Tang, 2020. Uncertainty Analysis for RadCalNet Instrumented Test Sites Using the Baotou Sites BTCN and BSCN as Examples, Remote Sensing, 12(11): 1696.   DOI
19 Mahiny, A. S. and B. J. Turner, 2007. A Comparison of Four Common Atmospheric Correction Methods, Photogrammetric Engineering and Remote Sensing, 73(4): 361-368.   DOI
20 Pacifici, F., 2020. Future of Remote Sensing and Data Quality, https://calval.cr.usgs.gov/apps/sites/default/files/jacie/2020-S5-Pacifici-Future_Remote_Sensing_Data_Quality.pdf, Accessed on Oct. 20, 2021.
21 Shin, D.Y., H.Y. Ahn, S.G. Lee, C.U. Choi, and J.S. Kim, 2016. Radiometric Cross-calibration of KOMPSAT-3A with Landsat-8, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41(B1): 379-382.
22 Kuester, M., 2017. Absolute Radiometric Calibration: 2016v0, https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/209/ABSRADCAL_FLEET_2016v0_Rel20170606.pdf, Accessed on Oct. 20, 2021.
23 Manakos, I., K. Manevski, C. Kalaitzidis, and D. Edler, 2011.Comparison between Atmospheric Correction Modules on the Basis of Worldview-2 Imagery and In Situ Spectroradiometric Measurements, Proc. of the 7th EARSeL SIG Imaging Spectroscopy Workshop, Edinburgh, UK, Apr. 11-13, pp. 11-13.
24 Radiometric Use of WorldView-2 Imagery Technical Note, 2010. https://dg-cms-uploads-production.s3.amazonaws.com/uploads/document/file/104/Radiometric_Use_of_WorldView-2_Imagery.pdf, Accessed on Oct. 20, 2021.
25 Vuolo, F., M. Zoltak,C. Pipitone, L. Zappa, H.Wenng, M. Immitzer, M. Weiss, F. Baret, and C. Atzberger, 2016. Data Service Platform for Sentinel-2 Surface Reflectance and Value Added Products: System Use and Examples, Remote Sensing, 8(11): 938.   DOI
26 Kim, K. and K. Lee, 2021. An Implementation of OTB Extension to Produce TOA and TOC Reflectance of LANDSAT-8 OLI Images and Its Product Verification Using RadCalNet RVUS Data, Korean Journal of Remote Sensing, 37(3): 449-461 (in Korean with English abstract).   DOI