• Title/Summary/Keyword: KOMAC

Search Result 24, Processing Time 0.027 seconds

Dose Distribution of 100 MeV Proton Beams in KOMAC by using Liquid Organic Scintillator (액체 섬광체를 이용한 100 MeV 양성자 빔의 선량 분포 평가)

  • Kim, Sunghwan
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.621-626
    • /
    • 2017
  • In this paper, an optical dosimetric system for radiation dose measurement is developed and characterized for 100 MeV proton beams in KOMAC(Korea Multi-Purpose Accelerator Complex). The system consists of 10 wt% Ultima GoldTM liquid organic scintillator in the ethanol, a camera lens(50 mm / f1.8), and a high sensitivity CMOS(complementary metal-oxide-semiconductor) camera (ASI120MM, ZWO Co.). The FOV(field of view) of the system is designed to be 150 mm at a distance of 2 m. This system showed sufficient linearity in the range of 1~40 Gy for the 100 MeV proton beams in KOMAC. We also successfully got the percentage depth dose and the isodose curves of the 100 MeV proton beams from the captured images. Because the solvent is not a human tissue equivalent material, we can not directly measure the absorbed dose of the human body. Through this study, we have established the optical dosimetric procedure and propose a new volume dose assessment method.

A Study on the Improvement of Gamma Ray Energy Spectrum Resolution through Electrical Noise Reduction of High Purity Ge Detector (고순도 Ge 검출기의 전기적 노이즈 감소를 통한 감마선 에너지 스펙트럼의 분해능 향상에 관한 연구)

  • Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.849-856
    • /
    • 2020
  • In the gamma-ray energy spectrum study, nuclide analysis through energy analysis is very important. High-purity Ge detectors, which are commonly used for gamma-ray energy measurements, are commonly used because of their high energy resolution and relatively high detection efficiency. However, in order to maintain a high energy resolution, the semiconductor detector has a problem in that it is difficult to maintain the original performance if the noise generated from the surrounding environment is not effectively blocked, and the effect of the expensive device is not achieved. Therefore, in this study, ground loop isolator (NEXT-001HDGL) was used to remove the electrical noise generated from the detector. In order to test the effect of improving energy resolution, HPGe detection device newly installed in the proton accelerator KOMAC was used. In the case of gamma-ray energy 2614 keV, the energy resolution was improved from (0.16 ± 0.02) % to (0.11 ± 0.01) %, and in the case of gamma-ray energy 662 keV of 137Cs isotope, the energy resolution was improved from (0.72 ± 0.07) % to (0.27 ± 0.03) %. This result is considered to be very useful for the gamma ray spectrum study using the HPGe detection equipment of KOMAC(Korea Multi-Purpose Accelerator Complex).

Genetic Analysis of Wheat for Plant Height by RNA-seq Analysis of Wheat Cultivars 'Keumkang' and 'Komac 5'

  • Moon Seok Kim;Jin Seok Yoon;Yong Weon Seo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.275-275
    • /
    • 2022
  • One of the most widely grown food crops in the world, wheat, is increasing more lodged since for increased rains and winds caused by abnormal climate. During the Green Revolution, shorter wheat cultivars were bred using many Rht genes to increase lodging resistance. However, since only some Rht genes were used for breeding shorter wheat, it may have had a limited impact on wheat breeding and reduced genetic diversity. Therefore, it is essential to search for genes that have breeding potential and affect dwarfism in order to increase the genetic diversity of dwarf characteristics in wheat. In this study, we performed the RNA-seq between 'Keumkang' and 'Komac 5' ('Keumkang' mutant) to analyze the difference in plant height. Differentially expressed genes (DEGs) analysis and Gene function annotation were performed using 265,365,558 mapped reads. Cluster set analysis was performed to compress and select candidate gene DEGs affecting plant height, stem and internode. Gene expression analysis was performed in order to identify the functions of the selected genes by condensing the results of the DEG analysis into a cluster set analysis. This analysis of these plant height-related genes could help reduce plant height, improve lodging resistance, and increase wheat yield. Its application to wheat breeding will also affect the increased genetic diversity of wheat dwarfism.

  • PDF

Phenotypic and Genetic Effects of Dwarfing Genes on Plant Height and Some Agronomic Traits in Wheat

  • Moon Seok Kim;Jin Seok Yoon;Yong Weon Seo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.276-276
    • /
    • 2022
  • Wheat is one of the most widely grown food crops worldwide. Extreme precipitation and wind disturbances increased due to the abnormal climate, which resulted in increased lodging. Introduction of dwarf genes in wheat significantly increased lodging resistance and productivity in wheat breeding. In this study, we performed the genotyping of dwarfing genes between 'Keumkang' and 'Komac 5' ('Keumkang' mutant). In addition, we investigated the relationship between plant height and several phenotypic characters using F2 segregation populations derived from crosses between the two varieties. There was no significant difference in phenotypic characters between the two varieties except for plant height. In the genotyping analysis using dwarfing genes, mutations of two dwarfing gene were found to be induced between the two varieties. The four genotypes of the F2 populations from a crossing between 'Keumkang' and 'Komac 5' were used to compare and evaluate the effects of two dwarfing genes. Plants with two single mutant dwarfing gene and double mutant dwarfing gene revealed reduced plant heights than control plants by 4.5%, 6.9%, and 33.2%, respectively. The phenotype analysis showed that double mutant dwarfing gene affected wheat stem growth as the length decreases from the second node, resulting in decreased plant height. However, there were no significant differences in the agronomic traits between mutant plants and control plant. These results may provide novel information about the effect of double mutant dwarfing gene on plant height, and may help improve lodging tolerance and wheat yield.

  • PDF

다목적 가속기용 대전류, 저에미턴스 양성자 이온원 개발 연구

  • 홍인석;엄규섭;황용석;조용섭;감상신;정기석;최병호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.946-950
    • /
    • 1998
  • 다목적 양성자 가속기(Korea Multi-purpose Accelerator Complex; KOMAC)를 위한 Duoplasmatron이온원이 설계 및 제작되었다. 빔인출을 위한 60㎸ 고전압시스템의 테스트가 수행되었으며 50㎸인출전압에서 20㎃의 수소 빔을 인출 할수 있었다. 이 이온원은 30㎸ 인출전압에서 20㎃이상의 빔전류와 90% 빔전류에서 0.5$\pi$mm mrad정도의 낮은 수준의 빔에미턴스와 약 50% 양성자분을을 얻었다. 고밀도 고주파 플라즈마 원(예를들어 헬리콘와 Transformer coupled plasma;TCP 플라즈마원)이 양성자 및 수소 음이온원으로의 유용성에 대한 연구가 진행중이다.

  • PDF

$H^-$ Stripping Simulation with a Magnet and $H^{\circ}$ Beam Extractor Design

  • Ahn, Hyo-Eun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.951-956
    • /
    • 1998
  • The beam extraction system for the KOMAC[1] (Korea Multi-purpose Accelerator Complex) project is to be designed to partially extract H ̄ beam at both 100 and 260 MeV This paper describes a simulation study of charge changing extraction with a stripper magnet and a possible design of a H$^{0}$ extractor by utilizing the simulation study The method consists of converting the negative hydrogen (H ̄) ion beam from the linac to a chosen intensity (0-100%) of neutral hydrogen (H$^{0}$ ) beam having an acceptable omittance and drifting it directly onto a stripper foil followed by a downstream beamline.

  • PDF

Measurement of Gamma ray Spectrum for the 27Al(p,3p+n)24Na Nuclear Reaction by using 100 MeV Proton Acceleration System (100 MeV 양성자가속기를 이용한 27Al(p,3p+n)24Na 핵반응에 대한 감마선 스펙트럼 측정)

  • Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.1
    • /
    • pp.55-59
    • /
    • 2015
  • Research about the proton nuclear reaction is actively achieving on the proton therapy including material development of fusion reactor. The proton induced gamma ray energy(2754, 1386 keV) spectrum of 27Al(p,3p+n)24Na reaction was measured with 100 MeV high energy proton beam. The proton beam in the experiment was derived from 100 MeV proton linear accelerator in the KOMAC. We measured the gamma ray intensity ratio of the decay level from the energy spectrum. The previous results have been compared with the current result. Strength of measured gamma rays will provide very important information though decide high energy gamma radiation detection efficiency.