• 제목/요약/키워드: KOK

검색결과 179건 처리시간 0.075초

Linear Form Finding Approach for Regular and Irregular Single Layer Prism Tensegrity

  • Moghaddas, Mohammad;Choong, Kok Keong;Kim, Jae-Yeol;Kang, Joo-Won
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1654-1665
    • /
    • 2018
  • In an irregular prism tensegrity, the number of force equilibrium equations is less than the number of unknown parameters of nodal coordinates and member force ratios. As a result, the form-finding process normally becomes nonlinear with additional conditions or needs to be carried out with the use of iterative procedures. For cases of irregular prism tensegrity which involves large number of members, it was found that previously proposed methods of form-finding are not practical. Moreover, there is a need for a form-finding approach which is able to cater to different requirements on final configuration. In this paper, the length relation condition is introduced to be used in combination with the force equilibrium equation. With the combined use of length relation and equilibrium conditions, a linear form-finding approach for irregular prism tensegrity was successfully formulated and developed. An easy-to-use interactive form-finding tool has been developed which can be used for form-finding of irregular prism tensegrities with large number of elements as well as under diverse specific requirements on their configurations.

Employing TLBO and SCE for optimal prediction of the compressive strength of concrete

  • Zhao, Yinghao;Moayedi, Hossein;Bahiraei, Mehdi;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.753-763
    • /
    • 2020
  • The early prediction of Compressive Strength of Concrete (CSC) is a significant task in the civil engineering construction projects. This study, therefore, is dedicated to introducing two novel hybrids of neural computing, namely Shuffled Complex Evolution (SCE) and Teaching-Learning-Based Optimization (TLBO) for predicting the CSC. The algorithms are applied to a Multi-Layer Perceptron (MLP) network to create the SCE-MLP and TLBO-MLP ensembles. The results revealed that, first, intelligent models can properly handle analyzing and generalizing the non-linear relationship between the CSC and its influential parameters. For example, the smallest and largest values of the CSC were 17.19 and 58.53 MPa, and the outputs of the MLP, SCE-MLP, and TLBO-MLP range in [17.61, 54.36], [17.69, 55.55] and [18.07, 53.83], respectively. Second, applying the SCE and TLBO optimizers resulted in increasing the correlation of the MLP products from 93.58 to 97.32 and 97.22%, respectively. The prediction error was also reduced by around 34 and 31% which indicates the high efficiency of these algorithms. Moreover, regarding the computation time needed to implement the SCE-MLP and TLBO-MLP models, the SCE is a considerably more time-efficient optimizer. Nevertheless, both suggested models can be promising substitutes for laboratory and destructive CSC evaluative models.

Predicting the splitting tensile strength of concrete using an equilibrium optimization model

  • Zhao, Yinghao;Zhong, Xiaolin;Foong, Loke Kok
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.81-93
    • /
    • 2021
  • Splitting tensile strength (STS) is an important mechanical parameter of concrete. This study offers novel methodologies for the early prediction of this parameter. Artificial neural network (ANN), which is a leading predictive method, is synthesized with two metaheuristic algorithms, namely atom search optimization (ASO) and equilibrium optimizer (EO) to achieve an optimal tuning of the weights and biases. The models are applied to data collected from the published literature. The sensitivity of the ASO and EO to the population size is first investigated, and then, proper configurations of the ASO-NN and EO-NN are compared to the conventional ANN. Evaluating the prediction results revealed the excellent efficiency of EO in optimizing the ANN. Accuracy improvements attained by this algorithm were 13.26 and 11.41% in terms of root mean square error and mean absolute error, respectively. Moreover, it raised the correlation from 0.89958 to 0.92722. This is while the results of the conventional ANN were slightly better than ASO-NN. The EO was also a faster optimizer than ASO. Based on these findings, the combination of the ANN and EO can be an efficient non-destructive tool for predicting the STS.

Slope stability analysis using black widow optimization hybridized with artificial neural network

  • Hu, Huanlong;Gor, Mesut;Moayedi, Hossein;Osouli, Abdolreza;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.523-533
    • /
    • 2022
  • A novel metaheuristic search method, namely black widow optimization (BWO) is employed to increase the accuracy of slope stability analysis. The BWO is a recently-developed optimizer that supervises the training of an artificial neural network (ANN) for predicting the factor of safety (FOS) of a single-layer cohesive soil slope. The designed slope bears a loaded foundation in different distances from the crest. A sensitivity analysis is conducted based on the number of active individuals in the BWO algorithm, and it was shown that the best performance is acquired for the population size of 40. Evaluation of the results revealed that the capability of the ANN was significantly enhanced by applying the BWO. In this sense, the learning root mean square error fell down by 23.34%. Also, the correlation between the testing data rose from 0.9573 to 0.9737. Therefore, the postposed BWO-ANN can be promisingly used for the early prediction of FOS in real-world projects.

Metaheuristic-reinforced neural network for predicting the compressive strength of concrete

  • Hu, Pan;Moradi, Zohre;Ali, H. Elhosiny;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • 제30권2호
    • /
    • pp.195-207
    • /
    • 2022
  • Computational drawbacks associated with regular predictive models have motivated engineers to use hybrid techniques in dealing with complex engineering tasks like simulating the compressive strength of concrete (CSC). This study evaluates the efficiency of tree potential metaheuristic schemes, namely shuffled complex evolution (SCE), multi-verse optimizer (MVO), and beetle antennae search (BAS) for optimizing the performance of a multi-layer perceptron (MLP) system. The models are fed by the information of 1030 concrete specimens (where the amount of cement, blast furnace slag (BFS), fly ash (FA1), water, superplasticizer (SP), coarse aggregate (CA), and fine aggregate (FA2) are taken as independent factors). The results of the ensembles are compared to unreinforced MLP to examine improvements resulted from the incorporation of the SCE, MVO, and BAS. It was shown that these algorithms can considerably enhance the training and prediction accuracy of the MLP. Overall, the proposed models are capable of presenting an early, inexpensive, and reliable prediction of the CSC. Due to the higher accuracy of the BAS-based model, a predictive formula is extracted from this algorithm.

Novel integrative soft computing for daily pan evaporation modeling

  • Zhang, Yu;Liu, LiLi;Zhu, Yongjun;Wang, Peng;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • 제30권4호
    • /
    • pp.421-432
    • /
    • 2022
  • Regarding the high significance of correct pan evaporation modeling, this study introduces two novel neuro-metaheuristic approaches to improve the accuracy of prediction for this parameter. Vortex search algorithms (VSA), sunflower optimization (SFO), and stochastic fractal search (SFS) are integrated with a multilayer perceptron neural network to create the VSA-MLPNN, SFO-MLPNN, and SFS-MLPNN hybrids. The climate data of Arcata-Eureka station (operated by the US environmental protection agency) belonging to the years 1986-1989 and the year 1990 are used for training and testing the models, respectively. Trying different configurations revealed that the best performance of the VSA, SFO, and SFS is obtained for the population size of 400, 300, and 100, respectively. The results were compared with a conventionally trained MLPNN to examine the effect of the metaheuristic algorithms. Overall, all four models presented a very reliable simulation. However, the SFS-MLPNN (mean absolute error, MAE = 0.0997 and Pearson correlation coefficient, RP = 0.9957) was the most accurate model, followed by the VSA-MLPNN (MAE = 0.1058 and RP = 0.9945), conventional MLPNN (MAE = 0.1062 and RP = 0.9944), and SFO-MLPNN (MAE = 0.1305 and RP = 0.9914). The findings indicated that employing the VSA and SFS results in improving the accuracy of the neural network in the prediction of pan evaporation. Hence, the suggested models are recommended for future practical applications.

A Survey on the Mobile Crowdsensing System life cycle: Task Allocation, Data Collection, and Data Aggregation

  • Xia Zhuoyue;Azween Abdullah;S.H. Kok
    • International Journal of Computer Science & Network Security
    • /
    • 제23권3호
    • /
    • pp.31-48
    • /
    • 2023
  • The popularization of smart devices and subsequent optimization of their sensing capacity has resulted in a novel mobile crowdsensing (MCS) pattern, which employs smart devices as sensing nodes by recruiting users to develop a sensing network for multiple-task performance. This technique has garnered much scholarly interest in terms of sensing range, cost, and integration. The MCS is prevalent in various fields, including environmental monitoring, noise monitoring, and road monitoring. A complete MCS life cycle entails task allocation, data collection, and data aggregation. Regardless, specific drawbacks remain unresolved in this study despite extensive research on this life cycle. This article mainly summarizes single-task, multi-task allocation, and space-time multi-task allocation at the task allocation stage. Meanwhile, the quality, safety, and efficiency of data collection are discussed at the data collection stage. Edge computing, which provides a novel development idea to derive data from the MCS system, is also highlighted. Furthermore, data aggregation security and quality are summarized at the data aggregation stage. The novel development of multi-modal data aggregation is also outlined following the diversity of data obtained from MCS. Overall, this article summarizes the three aspects of the MCS life cycle, analyzes the issues underlying this study, and offers developmental directions for future scholars' reference.

Efficient Privacy Preserving Anonymous Authentication Announcement Protocol for Secure Vehicular Cloud Network

  • Nur Afiqah Suzelan Amir;Wan Ainun Mior Othman;Kok Bin Wong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권5호
    • /
    • pp.1450-1470
    • /
    • 2023
  • In a Vehicular Cloud (VC) network, an announcement protocol plays a critical role in promoting safety and efficiency by enabling vehicles to disseminate safety-related messages. The reliability of message exchange is essential for improving traffic safety and road conditions. However, verifying the message authenticity could lead to the potential compromise of vehicle privacy, presenting a significant security challenge in the VC network. In contrast, if any misbehavior occurs, the accountable vehicle must be identifiable and removed from the network to ensure public safety. Addressing this conflict between message reliability and privacy requires a secure protocol that satisfies accountability properties while preserving user privacy. This paper presents a novel announcement protocol for secure communication in VC networks that utilizes group signature to achieve seemingly contradictory goals of reliability, privacy, and accountability. We have developed the first comprehensive announcement protocol for VC using group signature, which has been shown to improve the performance efficiency and feasibility of the VC network through performance analysis and simulation results.

Teaching-learning-based strategy to retrofit neural computing toward pan evaporation analysis

  • Rana Muhammad Adnan Ikram;Imran Khan;Hossein Moayedi;Loke Kok Foong;Binh Nguyen Le
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.37-47
    • /
    • 2023
  • Indirect determination of pan evaporation (PE) has been highly regarded, due to the advantages of intelligent models employed for this objective. This work pursues improving the reliability of a popular intelligent model, namely multi-layer perceptron (MLP) through surmounting its computational knots. Available climatic data of Fresno weather station (California, USA) is used for this study. In the first step, testing several most common trainers of the MLP revealed the superiority of the Levenberg-Marquardt (LM) algorithm. It, therefore, is considered as the classical training approach. Next, the optimum configurations of two metaheuristic algorithms, namely cuttlefish optimization algorithm (CFOA) and teaching-learning-based optimization (TLBO) are incorporated to optimally train the MLP. In these two models, the LM is replaced with metaheuristic strategies. Overall, the results demonstrated the high competency of the MLP (correlations above 0.997) in the presence of all three strategies. It was also observed that the TLBO enhances the learning and prediction accuracy of the classical MLP (by nearly 7.7% and 9.2%, respectively), while the CFOA performed weaker than LM. Moreover, a comparison between the efficiency of the used metaheuristic optimizers showed that the TLBO is a more time-effective technique for predicting the PE. Hence, it can serve as a promising approach for indirect PE analysis.

Application of six neural network-based solutions on bearing capacity of shallow footing on double-layer soils

  • Wenjun DAI;Marieh Fatahizadeh;Hamed Gholizadeh Touchaei;Hossein Moayedi;Loke Kok Foong
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.231-244
    • /
    • 2023
  • Many of the recent investigations in the field of geotechnical engineering focused on the bearing capacity theories of multilayered soil. A number of factors affect the bearing capacity of the soil, such as soil properties, applied overburden stress, soil layer thickness beneath the footing, and type of design analysis. An extensive number of finite element model (FEM) simulation was performed on a prototype slope with various abovementioned terms. Furthermore, several non-linear artificial intelligence (AI) models are developed, and the best possible neural network system is presented. The data set is from 3443 measured full-scale finite element modeling (FEM) results of a circular shallow footing analysis placed on layered cohesionless soil. The result is used for both training (75% selected randomly) and testing (25% selected randomly) the models. The results from the predicted models are evaluated and compared using different statistical indices (R2 and RMSE) and the most accurate model BBO (R2=0.9481, RMSE=4.71878 for training and R2=0.94355, RMSE=5.1338 for testing) and TLBO (R2=0.948, RMSE=4.70822 for training and R2=0.94341, RMSE=5.13991 for testing) are presented as a simple, applicable formula.