Browse > Article
http://dx.doi.org/10.12989/sss.2020.26.6.753

Employing TLBO and SCE for optimal prediction of the compressive strength of concrete  

Zhao, Yinghao (Guangzhou Institute of Building Science Co., Ltd.)
Moayedi, Hossein (Institute of Research and Development, Duy Tan University)
Bahiraei, Mehdi (Faculty of Engineering, Razi University)
Foong, Loke Kok (Department for Management of Science and Technology Development, Ton Duc Thang University)
Publication Information
Smart Structures and Systems / v.26, no.6, 2020 , pp. 753-763 More about this Journal
Abstract
The early prediction of Compressive Strength of Concrete (CSC) is a significant task in the civil engineering construction projects. This study, therefore, is dedicated to introducing two novel hybrids of neural computing, namely Shuffled Complex Evolution (SCE) and Teaching-Learning-Based Optimization (TLBO) for predicting the CSC. The algorithms are applied to a Multi-Layer Perceptron (MLP) network to create the SCE-MLP and TLBO-MLP ensembles. The results revealed that, first, intelligent models can properly handle analyzing and generalizing the non-linear relationship between the CSC and its influential parameters. For example, the smallest and largest values of the CSC were 17.19 and 58.53 MPa, and the outputs of the MLP, SCE-MLP, and TLBO-MLP range in [17.61, 54.36], [17.69, 55.55] and [18.07, 53.83], respectively. Second, applying the SCE and TLBO optimizers resulted in increasing the correlation of the MLP products from 93.58 to 97.32 and 97.22%, respectively. The prediction error was also reduced by around 34 and 31% which indicates the high efficiency of these algorithms. Moreover, regarding the computation time needed to implement the SCE-MLP and TLBO-MLP models, the SCE is a considerably more time-efficient optimizer. Nevertheless, both suggested models can be promising substitutes for laboratory and destructive CSC evaluative models.
Keywords
civil engineering; concrete compressive strength; artificial neural network; metaheuristic optimizers;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Liu, C., Wang, F., Deng, X., Pang, S., Liu, J., Wu, Y. and Xu, Z. (2020b), "Hailstone-induced dynamic responses of pretensioned umbrella membrane structure", Adv. Struct. Eng., 1369433220940149. https://doi.org/10.1177/1369433220940149.   DOI
2 Liu, C., Wang, F., He, L., Deng, X., Liu, J. and Wu, Y. (2020c), "Experimental and numerical investigation on dynamic responses of the umbrella membrane structure excited by heavy rainfall", J. Vib. Control, 2020, 1077546320932691. https://doi.org/10.1177/1077546320932691.   DOI
3 Lu, H., Kang, Y., Liu, L. and Li, J. (2019a), "Comprehensive groundwater safety assessment under potential shale gas contamination based on integrated analysis of reliability-resilience-vulnerability and gas migration index", J. Hydrol., 578, 124072. https://doi.org/10.1016/j.jhydrol.2019.124072.   DOI
4 Zhao, X., Li, D., Yang, B., Ma, C., Zhu, Y. and Chen, H. (2014), "Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton", Appl. Soft Comput., 24, 585-596. https://doi.org/10.1016/j.asoc.2014.07.024.   DOI
5 Zhao, X., Li, D., Yang, B., Chen, H., Yang, X., Yu, C. and Liu, S. (2015), "A two-stage feature selection method with its application", Comput. Elec. Eng., 47, 114-125. https://doi.org/10.1016/j.compeleceng.2015.08.011.   DOI
6 Xu, X. and Chen, H.L. (2014), "Adaptive computational chemotaxis based on field in bacterial foraging optimization", Soft Comput., 18(4), 797-807. https://doi.org/10.1007/s00500-013-1089-4.   DOI
7 Xu, M., Li, T., Wang, Z., Deng, X., Yang, R. and Guan, Z. (2018), "Reducing complexity of HEVC: A deep learning approach", IEEE Trans. Image Process., 27(10), 5044-5059. https://doi.org/10.1109/TIP.2018.2847035.   DOI
8 Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Netw., 2(5), 359-366.   DOI
9 Hu, L., Hong, G., Ma, J., Wang, X. and Chen, H. (2015), "An efficient machine learning approach for diagnosis of paraquat-poisoned patients", Comput. Biol. Med., 59, 116-124. https://doi.org/10.1016/j.compbiomed.2015.02.003.   DOI
10 Hu, P., Cao, L., Su, J., Li, Q. and Li, Y. (2020), "Distribution characteristics of salt-out particles in steam turbine stage", Energy, 192, 116626. https://doi.org/10.1016/j.energy.2019.116626.   DOI
11 Trung, N.T., Alemi, N., Haido, J..H, Shariati, M., Baradaran, S. and Yousif, S.T. (2019), "Reduction of cement consumption by producing smart green concretes with natural zeolites", Smart Struct. Syst., Int. J., 24(3), 415-425. https://doi.org/10.12989/sss.2019.24.3.415.   DOI
12 Bui, D.T., Ghareh, S., Moayedi, H. and Nguyen, H. (2019), "Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 2019, 1-12. 10.1007/s00366-019-00850-w.   DOI
13 Lu, H., Tian, P. and He, L. (2019b), "Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions", Renew. Sustain. Energy Rev., 112, 788-796. https://doi.org/10.1016/j.rser.2019.06.013.   DOI
14 Lv, Z., Li, X., Lv, H. and Xiu, W. (2020), "BIM big data storage in WebVRGIS", IEEE Trans. Ind. Inf., 16(4), 2566-2573. https://doi.org/10.1109/TII.2019.2916689.   DOI
15 Ma, X., Foong, L.K., Morasaei, A., Ghabussi, A. and Lyu, Z. (2020), "Swarm-based hybridizations of neural network for predicting the concrete strength", Smart Struct. Syst., Int. J., 26(2), 241-251. https://doi.org/10.12989/sss.2020.26.2.241.   DOI
16 Ira, J., Hasalova, L. and Jahoda, M. (2015), "The use of optimization in fire development modeling, the use of optimization techniques for estimation of pyrolysis model input parameters", Proceedings of the International Conference, Prague, Czech, April.
17 Shen, C.Q., Wang, D., Liu, Y.B., Kong, F.R. and Tse, P.W. (2014), "Recognition of rolling bearing fault patterns and sizes based on two-layer support vector regression machines", Smart Struct. Syst., Int. J., 13(3), 453-471. https://doi.org/10.12989/sss.2014.13.3.453.   DOI
18 Shen, L., Chen, H., Yu, Z., Kang, W., Zhang, B., Li, H., Yang, B. and Liu, D. (2016), "Evolving support vector machines using fruit fly optimization for medical data classification", Knowl. Based Syst., 96, 61-75. https://doi.org/10.1016/j.knosys.2016.01.002.   DOI
19 Song, J., Zhong, Q., Wang, W., Su, C., Tan, Z. and Liu, Y. (2020), "FPDP: Flexible privacy-preserving data publishing scheme for smart agriculture", IEEE Sensors J., 1, 1. https://doi.org/10.1109/JSEN.2020.3017695.   DOI
20 Togan, V. (2012), "Design of planar steel frames using teachinglearning based optimization", Eng. Struct., 34, 225-232. https://doi.org/10.1016/j.engstruct.2011.08.035.   DOI
21 Tsai, Y.H., Wang, J., Chien, W.T., Wei, C.Y., Wang, X. and Hsieh, S.H. (2019), "A BIM-based approach for predicting corrosion under insulation", Auto. Constr., 107, 102923. https://doi.org/10.1016/j.autcon.2019.102923.   DOI
22 Vu, D.T. and Hoang, N.D. (2016), "Punching shear capacity estimation of FRP-reinforced concrete slabs using a hybrid machine learning approach", Struct. Infrastruct. Eng., 12(9), 1153-1161. https://doi.org/10.1080/15732479.2015.1086386.   DOI
23 More, J.J. (1978), Numerical Analysis, Springer, USA.
24 Mirjalili, S. and Lewis, A. (2016), "The whale optimization algorithm", Adv. Eng. Softw., 95, 51-67.   DOI
25 Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H. and Mirjalili, S.M. (2017), "Salp swarm algorithm: A bio-inspired optimizer for engineering design problems", Adv. Eng. Softw., 114, 163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002.   DOI
26 Moayedi, H., Nguyen, H. and Safuan, A.R.A. (2019), "Novel metaheuristic classification approach in developing mathematical model-based solutions predicting failure in shallow footing", Eng. Comput., 36, 1-8. https://doi.org/10.1007/s00366-019-00819-9.   DOI
27 Naseri, H., Jahanbakhsh, H. and Moghadas Nejad, F. (2019), "Developing a novel machine learning method to predict the compressive strength of fly ash concrete in different ages", AUT J. Civ. Eng., 2019, 16124. https://doi.org/10.22060/AJCE.2019.16124.5569.   DOI
28 Lei, Z., Hao, S., Yang, J. and Dan, X. (2020), "Study on solid waste pyrolysis coke catalyst for catalytic cracking of coal tar", Int. J. Hydro, Energy., 45(38), 19280-19290. https://doi.org/10.1016/j.ijhydene.2020.05.075.   DOI
29 Ji, X., Ye, H., Zhou, J., Yin, Y. and Shen, X. (2017), "An improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industry", Appl. Soft Comput., 57, 504-516. https://doi.org/10.1016/j.asoc.2017.04.029.   DOI
30 Jiang, Q., Shao, F., Gao, W., Chen, Z., Jiang, G. and Ho, Y. (2019), "Unified no-reference quality assessment of singly and multiply distorted stereoscopic images", IEEE Trans. Image Process., 28(4), 1866-1881. https://doi.org/10.1109/TIP.2018.2881828.   DOI
31 Li, C., Hou, L., Sharma, B.Y., Li, H., Chen, C., Li, Y., Zhao, X., Huang, H., Cai, Z. and Chen, H. (2018), "Developing a new intelligent system for the diagnosis of tuberculous pleural effusion", Comput. Methods Programs Biomed., 153, 211-225. https://doi.org/10.1016/j.cmpb.2017.10.022.   DOI
32 Li, T., Xu, M., Zhu, C., Yang, R., Wang, Z. and Guan, Z. (2019), "A deep learning approach for multi-frame in-loop filter of HEVC", IEEE Trans. Image Process., 28(11), 5663-5678. https://doi.org/10.1109/TIP.2019.2921877.   DOI
33 Wu, C., Wang, X., Chen, M. and Kim, M.J. (2019), "Differential received signal strength based RFID positioning for construction equipment tracking", Adv. Eng. Inf., 42, 100960. https://doi.org/10.1016/j.aei.2019.100960.   DOI
34 Li, Z., Zhou, H., Hu, D. and Zhang, C. (2020), "Yield criterion for rocklike geomaterials based on strain energy and CMP model", Int. J. Geomech., 20(3), 04020013. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001593.   DOI
35 Ling, H., Qian, C., Kang, W., Liang, C. and Chen, H. (2019), "Combination of support vector machine and K-fold cross validation to predict compressive strength of concrete in marine environment", Constr. Build. Mater., 206, 355-363. https://doi.org/10.1016/j.conbuildmat.2019.02.071.   DOI
36 Wang, M. and Chen, H. (2020), "Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis", Appl. Soft Comput. J., 88, 105946. https://doi.org/10.1016/j.asoc.2019.105946.   DOI
37 Wang, S.J., Chen, H.L., Yan, W.J., Chen, Y.H. and Fu, X. (2014), "Face recognition and micro-expression recognition based on discriminant tensor subspace analysis plus extreme learning machine", Neural Process. Lett., 39(1), 25-43. https://doi.org/10.1007/s11063-013-9288-7.   DOI
38 Wang, M., Chen, H., Yang, B., Zhao, X., Hu, L., Cai, Z., Huang, H. and Tong, C. (2017), "Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses", Neurocomputing, 267, 69-84. https://doi.org/10.1016/j.neucom.2017.04.060.   DOI
39 Xia, J., Chen, H., Li, Q., Zhou, M., Chen, L., Cai, Z., Fang, Y. and Zhou, H. (2017), "Ultrasound-based differentiation of malignant and benign thyroid nodules: An extreme learning machine approach", Comput. Methods Programs Biomed., 147, 37-49. https://doi.org/10.1016/j.cmpb.2017.06.005.   DOI
40 Ni, T., Xu, Q., Huang, Z., Liang, H., Yan, A. and Wen, X. (2020), "A cost-effective TSV repair architecture for clustered faults in 3D IC", IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 1, 1. https://doi.org/10.1109/TCAD.2020.3025169.   DOI
41 Xu, M., Li, C., Chen, Z., Wang, Z. and Guan, Z. (2019a), "Assessing visual quality of omnidirectional videos", IEEE Trans. Circuits Syst. Video Technol., 29(12), 3516-3530. https://doi.org/10.1109/TCSVT.2018.2886277.   DOI
42 Onat, O. and Gul, M. (2018), "Application of Artificial Neural Networks to the prediction of out-of-plane response of infill walls subjected to shake table". Smart Struct. Syst., Int. J., 21(4), 521-535. https://doi.org/10.12989/sss.2018.21.4.521.   DOI
43 Zhao, X., Zhang, X., Cai, Z., Tian, X., Wang, X., Huang, Y., Chen, H. and Hu, L. (2019), "Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients", Comput. Biol. Chem., 78, 481-490. https://doi.org/10.1016/j.compbiolchem.2018.11.017.   DOI
44 Zheng, S., Lyu, Z. and Foong, L.K. (2020), "Early prediction of cooling load in energy-efficient buildings through novel optimizer of shuffled complex evolution", Eng. Comput., 2020, 1-15. https://doi.org/10.1007/s00366-020-01140-6.   DOI
45 Han, I.J., Yuan, T.F., Lee, J.Y., Yoon, Y.S. and Kim, J.H. (2019), "Learned prediction of compressive strength of GGBFS concrete using hybrid artificial neural network models", Materials, 12(22), 3708. https://doi.org/10.3390/ma12223708.   DOI
46 Chao, L., Zhang, K., Li, Z., Zhu, Y., Wang, J. and Yu, Z. (2018), "Geographically weighted regression based methods for merging satellite and gauge precipitation", J. Hydrol., 558, 275-289. https://doi.org/10.1016/j.jhydrol.2018.01.042.   DOI
47 Chen, H.L., Wang, G., Ma, C., Cai, Z.N., Liu, W.B. and Wang, S.J. (2016), "An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease", Neurocomput., 184, 131-144. https://doi.org/10.1016/j.neucom.2015.07.138.   DOI
48 Zhu, J., Wang, X., Chen, M., Wu, P. and Kim, M.J. (2019), "Integration of BIM and GIS: IFC geometry transformation to shapefile using enhanced open-source approach", Auto. Constr., 106, 102859. https://doi.org/10.1016/j.autcon.2019.102859.   DOI
49 Zuo, C., Chen, Q., Tian, L., Waller, L. and Asundi, A. (2015), "Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective", Opt. Lasers Eng., 71, 20-32. https://doi.org/10.1016/j.optlaseng.2015.03.006.   DOI
50 Zuo, C., Sun, J., Li, J., Asundi, A. and Chen, Q. (2020), "Wide-field high-resolution 3d microscopy with fourier ptychographic diffraction tomography", Opt. Lasers Eng., 128, 106003. https://doi.org/10.1016/j.optlaseng.2020.106003.   DOI
51 Dong, Q., Cui, L. and Si, S. (2020), "Reliability and availability analysis of stochastic degradation systems based on bivariate Wiener processes", Appl. Math. Model., 79, 414-433. https://doi.org/10.1016/j.apm.2019.10.044.   DOI
52 Chen, H., Heidari, A.A., Chen, H., Wang, M., Pan, Z. and Gandomi, A.H. (2020), "Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies", Future Gener. Comput. Syst., 111, 175-198. https://doi.org/10.1016/j.future.2020.04.008.   DOI
53 Cook, R., Lapeyre, J., Ma, H. and Kumar, A. (2019), "Prediction of compressive strength of concrete: Critical comparison of performance of a hybrid machine learning model with standalone models", J. Mater. Civ. Eng., 31(11), 04019255. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002902.   DOI
54 Dao, D.V., Adeli, H., Ly, H.B., Le, L.M., Le, V.M., Le, T.T. and Pham, B.T. (2020), "A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a Monte Carlo simulation", Sustainability, 12(3), 830. 10.3390/su12030830. https://doi.org/10.3390/su12030830.   DOI
55 Rao, R. (2016), "Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems", Dec. Sci. Lett., 5(1), 1-30. https://doi.org/10.5267/j.dsl.2015.9.003.   DOI
56 Pham, A.D., Hoang, N.D. and Nguyen, Q.T. (2016), "Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression", J. Comput. Civ. Eng., 30(3), 06015002. https://doi.org/10.1061/%28ASCE%29CP.1943-5487.0000506.   DOI
57 Prayogo, D. (2018), "Metaheuristic-based machine learning system for prediction of compressive strength based on concrete mixture properties and early-age strength test results", Civ. Eng. Dimen., 20(1), 21-29. https://doi.org/10.9744/ced.20.1.21-29.   DOI
58 Qiu, C., Gong, S. and Gao, W. (2019), "Three artificial intelligence-based solutions predicting concrete slump", UPB Sci. Bull. Series C, 81(4), 2019.
59 Rao, R.V., Savsani, V.J. and Vakharia, D. (2011), "Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems", Comput. Aided Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015.   DOI
60 Sadowski, L., Nikoo, M., Shariq, M., Joker, E. and Czarnecki, S. (2019), "The nature-inspired metaheuristic method for predicting the creep strain of green concrete containing ground granulated blast furnace slag", Materials, 12(2), 293. https://doi.org/10.3390/ma12020293.   DOI
61 Yi, T.H., Li, H.N. and Sun, H.M. (2013), "Multi-stage structural damage diagnosis method based on energy-damage theory", Smart Struct. Syst., Int. J., 12(3-4), 345-361. https://doi.org/10.12989/sss.2013.12.3_4.345.   DOI
62 Sai, G.J. and Singh, V.P. (2019), "Prediction of compressive strength using support vector regression", Mendel, 2019, 51-56. https://doi.org/10.13164/mendel.2019.1.051.   DOI
63 Saldarriaga, M.V., Mahfoud, J., Steffen, V. and Hagopian, J.D. (2009), "Adaptive balancing of highly flexible rotors by using artificial neural networks". Smart Struct. Syst., Int. J., 5(5), 507-515. https://doi.org/10.12989/sss.2009.5.5.507.   DOI
64 Xu, Y., Chen, H., Luo, J., Zhang, Q., Jiao, S. and Zhang, X. (2019b), "Enhanced moth-flame optimizer with mutation strategy for global optimization", Inf. Sci., 492, 181-203. https://doi.org/10.1016/j.ins.2019.04.022.   DOI
65 Xu, M., Li, C., Zhang, S. and Callet, P.L. (2020), "State-of-the-art in 360° video/image processing: Perception, assessment and compression", IEEE J. Select. Topics Signal Process., 14(1), 5-26. https://doi.org/10.1109/JSTSP.2020.2966864.   DOI
66 Yang, R., Xu, M., Liu, T., Wang, Z. and Guan, Z. (2019), "Enhancing quality for HEVC compressed videos", IEEE Trans. Circuits Syst. Video Technol., 29(7), 2039-2054. https://doi.org/10.1109/TCSVT.2018.2867568.   DOI
67 Yang, Y., Liu, J., Yao, J., Kou, J., Li, Z., Wu, T., Zhang, K., Zhang, L. and Sunm, H. (2020), "Adsorption behaviors of shale oil in kerogen slit by molecular simulation", Chem. Eng. J., 387, 124054. https://doi.org/10.1016/j.cej.2020.124054.   DOI
68 Yeh, I.C. (2007), "Modeling slump flow of concrete using second-order regressions and artificial neural networks", Cement Concrete Compos., 29(6), 474-480. https://doi.org/10.1016/j.cemconcomp.2007.02.001.   DOI
69 Zhang, K., Wang, Q., Chao, L., Ye, J., Li, Z., Yu, Z., Yang, T. and Ju, Q. (2019), "Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China", J. Hydrol., 574, 903-914. https://doi.org/10.1016/j.jhydrol.2019.04.087.   DOI
70 Zhang, Y., Liu, R., Wang, X., Chen, H. and Li, C. (2020), "Boosted binary Harris hawks optimizer and feature selection"., Eng. Comput., 2020, 1-13. https://doi.org/10.1007/s00366-020-01028-5.   DOI
71 Guan, Z., Xing, Q., Xu, M., Yang, R., Liu, T. and Wang, Z. (2019), "MFQE 2.0: A new approach for multi-frame quality enhancement on compressed video", IEEE Trans. Pattern Anal. Mach. Intell., 2019, 1902. https://doi.org/10.1109/TPAMI.2019.2944806.   DOI
72 Duan, Q., Gupta, V.K. and Sorooshian, S. (1993), "Shuffled complex evolution approach for effective and efficient global minimization", J. Optim. Theory Appl., 76(3), 501-521. https://doi.org/10.1007/BF00939380.   DOI
73 Dutta, D. and Barai, S.V. (2019), Recent Advances in Structural Engineering, Springer, USA.
74 Felix, E.F., Possan, E. and Carrazedo, R. (2019), "Analysis of training parameters in the ANN learning process to mapping the concrete carbonation depth", J. Build. Pathol. Rehab., 4(1), 16. https://doi.org/10.1007/s41024-019-0054-8.   DOI
75 Feng, D.C., Liu, Z.T., Wang, X.D., Chen, Y., Chang, J.Q., Wei, D.F. and Jiang, Z.M. (2020), "Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach", Constr. Build. Mater., 230, 117000. https://doi.org/10.1016/j.conbuildmat.2019.117000.   DOI
76 Golafshani, E.M., Behnood, A. and Arashpour, M. (2020), "Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer", Constr. Build. Mater., 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266.   DOI
77 Al-Shamiri, A.K., Kim, J.H., Yuan, T.F. and Yoon, Y.S. (2019), "Modeling the compressive strength of high-strength concrete: An extreme learning approach", Constr. Build. Mater., 208, 204-219. https://doi.org/10.1016/j.conbuildmat.2019.02.165.   DOI
78 Asteris, P.G. and Mokos, V.G. (2019), "Concrete compressive strength using artificial neural networks", Neural Comput. Appl., 2019, 1-20. https://doi.org/10.1007/s00521-019-04663-2.   DOI
79 Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K, Trung, N.T. and Toghroli, A. (2020), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial neural network-genetic algorithm)", Smart Struct. Syst., Int. J., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183.   DOI
80 Shahbazi, Y., Delavari, E. and Chenaghlou, M.R. (2014), "Predicting the buckling load of smart multilayer columns using soft computing tools", Smart Struct. Syst., Int. J., 13(1), 81-98. https://doi.org/10.12989/sss.2013.13.1.081.   DOI
81 Liu, S., Chan, F.T. and Ran, W. (2016), "Decision making for the selection of cloud vendor: An improved approach under group decision-making with integrated weights and objective/subjective attributes", Exp. Syst. Appl., 55, 37-47. https://doi.org/10.1016/j.eswa.2016.01.059.   DOI
82 Liu, C., Deng, X., Liu, J., Peng, T., Yang, S. and Zheng, Z. (2020a), "Dynamic response of saddle membrane structure under hail impact", Eng. Struct., 214, 110597. https://doi.org/10.1016/j.engstruct.2020.110597.   DOI