• 제목/요약/키워드: KINEMATICS

검색결과 1,687건 처리시간 0.027초

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation

  • Tounsi, Abdelouahed;Al-Dulaijan, S.U.;Al-Osta, Mohammed A.;Chikh, Abdelbaki;Al-Zahrani, M.M.;Sharif, Alfarabi;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.511-524
    • /
    • 2020
  • In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.

DEVELOPMENT OF FINITE ELEMENT HUMAN NECK MODEL FOR VEHICLE SAFETY SIMULATION

  • Lee, I.H.;Choi, H.Y.;Lee, J.H.;Han, D.C.
    • International Journal of Automotive Technology
    • /
    • 제5권1호
    • /
    • pp.33-46
    • /
    • 2004
  • A finite element model development of a 50th percentile male cervical spine is presented in this paper. The model consists of rigid, geometrically accurate vertebrae held together with deformable intervertibral disks, facet joints, and ligaments modeled as a series of nonlinear springs. These deformable structures were rigorously tuned, through failure, to mimic existing experimental data; first as functional unit characterizations at three cervical levels and then as a fully assembled c-spine using the experimental data from Duke University and other data in the NHTSA database. After obtaining satisfactory validation of the performance of the assembled ligamentous cervical spine against available experimental data, 22 cervical muscle pairs, representing the majority of the neck's musculature, were added to the model. Hill's muscle model was utilized to generate muscle forces within the assembled cervical model. The muscle activation level was assumed to be the same for all modeled muscles and the degree of activation was set to correctly predict available human volunteer experimental data from NBDL. The validated model is intended for use as a post processor of dummy measurement within the simulated injury monitor (SIMon) concept being developed by NHTSA where measured kinematics and kinetic data obtained from a dummy during a crash test will serve as the boundary conditions to "drive" the finite element model of the neck. The post-processor will then interrogate the model to determine whether any ligament have exceeded its known failure limit. The model will allow a direct assessment of potential injury, its degree and location thus eliminating the need for global correlates such as Nij.

주 입력장치를 이용한 가상 슬레이브 매니퓰레이터의 시각화 (Visualization of Virtual Slave Manipulator Using the Master Input Device)

  • 김성현;송태길;이종열;윤지섭
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.388-394
    • /
    • 2003
  • 밀폐 및 차폐 공간을 갖는 핫셀에서 사용후핵연료와 같은 고방사선 물질을 취급하고 있으며, 핵주기시설에서 마스터-슬레이브 매니퓰레이터는 원격취급장비로서 널리 사용되고 있다. 본 연구에서는 차세대관리공정의 디지털 목업을 구축하고 원격유지보수를 위한 매니퓰레이터의 작업영역 및 작업분석을 수행하였다. 실제 환경과 동일한 가상 작업환경을 갖는 디지털 목업은 3차원 그래픽으로 모델링 된 공정장치 및 원격 취급장비들로 구성된다. 모델링 된 매니퓰레이터는 기구학 및 동작범위에 대한 속성을 부여되고 외부 입력장치는 space ball을 사용하여 매니퓰레이터의 동작을 구현하였다. 또한, Tele-operation 인터페이스를 사용하여 6축 외부 입력장치와 연계한 시스템을 개발하였으며 외부 입력에 따른 매니퓰레이터의 동작에 대한 동기는 만족할 만한 응답을 보였다. 이는 가상환경에서 작업자 교육을 위한 시스템 개발에 유용할 것이다.

  • PDF

Change in Kinematics of the Spine after Insertion of an Interspinous Spacer for the Treatment of the Lumbar Spinal Stenosis

  • Lee H. S.;Moon S. J.;Kwon S. Y.;Jung T. G.;Shin K. C.;Lee K. Y.;Lee S. J.
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권3호
    • /
    • pp.151-155
    • /
    • 2005
  • Interspinous spacers have been developed as an alternative surgical treatment for laminectomy or fusion with pedicle screws and rods for the treatment of lumbar spinal stenosis. However, its biomedical efficacies are well not known. In this study, we evaluated kinematic behaviors of the surgical and the adjacent levels before and after inserting interspinous spacers. Three porcine lumbar spines were prepared. On each specimen, an interspinous spacer was inserted at the L4-L5. Flexion-extension moments (0, 2.5, 5.0, 7.5, 10Nm) were applied. A stereophotogrammetric set-up with DLT algorithm was used to assess the three-dimensional motions of the specimen where three markers $({\square}0.8mm)$ were attached to each vertebra. Results showed that extension motion decreased by $15-24\%$ at the surgical level (L4-L5) after insertion of interspinous spacer. At the adjacent levels, the range of motion remained unchanged. In flexion, no significant changes in motion were observed regardless of levels. Therefore, our experimental results demonstrated the interspinous spacer is very effective in limiting the extension motion that may cause narrowing of the spinal canal and vertebral foramen while maintaining kinematic behaviors at the adjacent levels. Further, these results suggested that the use of interspinous spacer may be able to prevent lower back pain at the surgical level and to lower the incidence of degenerative changes at the adjacent levels.

온실에서 방울토마토 수확작업시 작업자의 생리학적 및 생체역학적 반응 측정 (Measurement of Worker's Physiological and Biomechanical Responses during the Cherry Tomato Harvesting Work in a Greenhouse)

  • 선우훈;임기택;김장호;손현목;정종훈
    • Journal of Biosystems Engineering
    • /
    • 제36권3호
    • /
    • pp.223-230
    • /
    • 2011
  • Physiological signals such as body temperature, heart rate, blood pressure and heart rate variability and biomechanical workload for stress analysis were investigated during the cherry tomato harvesting work in a greenhouse. The skin temperatures raised $0.05^{\circ}C$/min, $0.03^{\circ}C$/ min, and $0.08^{\circ}C$/min in standing, stooping and squatting postures, respectively. Breath rate significantly increased from 18 to 28 breaths/min during the cherry tomato harvesting work. As the heart rate during the work ranged from about 72 to 110 beats/min (bpm), the cherry tomato harvesting work appeared to be a light intensity task of less than 110 bpm. The worker's average energy consumption rate in three positions during 43 min working time was 65.74 kcal (91 kcal/h in 70 kg). This was a light intensity of work, compared to 75 kcal/h in 70 kg of basic metabolic energy consumption rate of a worker with 70 kg weight; The maximum shear force on the disk (L5/ S1) due to static workload in the cherry tomato harvesting work was 446 N in the stooping posture, 321 N in the squatting posture and 287 N in the standing posture. Acute stress index expressed with the heart rate variability, increased parasympathetic activation up to about 70 while workers were doing most agricultural work in this study. This study provided a system to measure quantitatively workers' physiological change, kinematics and kinetic factors without any restrictions of space in the greenhouse works.

텍스타일 스트럭처 원리와 연계된 3D 프린팅 개발 유형 분석 (Analysis of the Type of 3D Printing Development Linked with the Textile Structure Principle)

  • 김효진;김성달
    • 패션비즈니스
    • /
    • 제22권2호
    • /
    • pp.1-13
    • /
    • 2018
  • 3D printing technology, which is expected to play a leading role within the Fourth Industrial Revolution, is becoming distinguished not only in the space, automotive, medical and engineering industries, but also in the area of design. The fashion and textile structures created by 3D printing technology were classified into three types - basic structure, unified structure, and a new physical structure. When traditional weaving, knitting, and stitching was reinterpreted through 3D printing, there were apparent limitations in reproducing the characteristics of fabric structures due to differences in the materials and structures of traditional textiles. New physical structures are being developed to break away from merely reproducing traditional textile structures, and to bring out the characteristics of 3D printing technology. As examples of new physical structures, there are the kinematics structure which utilizes the hinge method, mesostructure cellular material, and the N12 disk structure. Such techniques potentially open a new paradigm of fashion and textile structures. Some innovative aspects of 3D printing technology may result in changes in the methods of collaboration, manufacturing, and distribution. Designers are receiving help from specialists of various backgrounds to merge 3D printing technology to create original works. Also, 3D printing not only makes personalized custom designs available, but shortens the distribution channels, foretelling a change within the fashion and textile industry.

경추부 장애와 신경근 조절 활동 변화와의 관련성에 대한 고찰 (Literature Review on the Association Between a Cervical Dysfunction and the Change of Neuromuscular Control Activity)

  • 김선엽;이혜정
    • 대한정형도수물리치료학회지
    • /
    • 제12권1호
    • /
    • pp.57-67
    • /
    • 2006
  • Musculoskeletal neck dysfunction syndromes are common in outpatient musculoskeletal pain practice. The underlying musculoskeletal and neurologic causes of pain are variable. In the management of these patients, it is important to accurately identify and treat these pain generators to optimize patient outcome. It is the purpose of this review to discuss three main categories of functional anatomy, the role of superficial/deep muscular system and the scientific evidence for optimal physical therapy intervention for cervical dysfunction. Specifically there is evidence of lowered microcirculation in the upper trapezius muscle, morphological signs of disturbed mitochondrial function which appears to be limited to type I fibers and an increased cross-sectional area of type I muscle fibers despite a lower capillary to fiber area ratio. In acute neck pain syndrome, changes in muscle activity of painful muscles may result from segmental and supraspinal inhibitory effects. Muscle activation is closely related to the control of joint movements and postures and it is difficult to separate the influence of the two components. Both the altered muscle recruitment patterns and altered kinematics appear to be a poor adaptation for pain of the head - neck region, as they are likely to result in increased compressive loading in the cervical spine, affecting muscles, articular structures such as zygapophyseal joints, connective tissues and neural tissues which are all peripheral generators of referred pain. The rectus capitus posterior minor muscle shows that it is one of the most important muscles of the suboccipital region. In this article, i reviewed the anatomy, neurophysiology, function and dysfunction as well as the treatment of cervical dysfunction.

  • PDF

LONG-SLIT SPECTROSCOPY OF PARSEC-SCALE JETS FROM DG TAURI

  • Oh, Heeyoung;Pyo, Tae-Soo;Yuk, In-Soo;Park, Byeong-Gon
    • 천문학회지
    • /
    • 제48권2호
    • /
    • pp.113-123
    • /
    • 2015
  • We present observational results from optical long-slit spectroscopy of parsec-scale jets of DG Tau. From HH 158 and HH 702, the optical emission lines of Hα, [O i] λλ6300, 6363, [N ii] λλ6548, 6584, and [S ii] λλ6716, 6731 are obtained. The kinematics and physical properties (i.e., electron density, electron temperature, ionization fraction, and mass-loss rate) are investigated along the blueshifted jet up to 650′′ distance from the source. For HH 158, the radial velocity ranges from −50 to −250 km s−1. The proper motion of the knots is 0.′′196 − 0.′′272 yr−1. The electron density is ∼104 cm−3 close to the star, and decreases to ∼102 cm−3 at 14′′ away from the star. Ionization fraction indicates that the gas is almost neutral in the vicinity of the source. It increases up to over 0.4 along the distance. HH 702 is located at 650′′ from the source. It shows ∼ −80 km s−1 in the radial velocity. Its line ratios are similar to those at knot C of HH 158. The mass-loss rate is estimated to be about ∼ 10−7 M yr−1, which is similar to values obtained from previous studies.

Molecular gas and star formation in early-type galaxies

  • Bureau, Martin
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.65-65
    • /
    • 2011
  • Early-type galaxies represent the end point of galaxy evolution and, despite pervasive residual star formation, are generally considered "red and dead", that is composed exclusively of old stars with no star formation. Here, their molecular gas content is constrained and discussed in relation to their evolution, supporting the continuing importance of minor mergers and/or cold gas accretion. First, as part of the Atlas3D survey, the first complete, large, volume-limited survey of CO in normal early-type galaxies is presented. At least of 23% of local early-types possess a substantial amount of molecular gas, the necessary ingredient for star formation, independent of mass and environment but dependent on the specific stellar angular momentum. Second, using CO synthesis imaging, the extent of the molecular gas is constrained and a variety of morphologies is revealed. The kinematics of the molecular gas and stars are often misaligned, implying an external gas origin in over a third of all systems, more than half in the field, while external gas accretion must be shot down in clusters. Third, many objects appear to be in the process of forming regular kpc-size decoupled disks, and a star formation sequence can be sketched by piecing together multi-wavelength information on the molecular gas, current star formation, and young stars. Fourth, early-type galaxies do not seem to systematically obey all our usual prejudices regarding star formation (e.g. Schmidt-Kennicutt law, far infrared-radio continuum correlation), suggesting a greater diversity in star formation processes than observed in disk galaxies and the possibility of "morphological quenching". Lastly, a first step toward constraining the physical properties of the molecular gas is taken, by modeling the line ratios of density- and opacity-sensitive molecules in a few objects. Taken together, these observations argue for the continuing importance of (minor) mergers and cold gas accretion in local early-types, and they provide a much greater understanding of the gas cycle in the galaxies harbouring most of the stellar mass. In the future, better dust masses and dust-to-gas mass ratios from Herschel should allow to place entirely independent constraints on the gas supply, while spatially-resolved high-density molecular gas tracers observed with ALMA will probe the interstellar medium and star formation laws locally in a regime entirely different from that normally probed in spiral galaxies.

  • PDF

Improved and quality-assessed emission and absorption line measurements in Sloan Digital Sky Survey galaxies

  • 오규석;;;이석영
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.73.2-73.2
    • /
    • 2011
  • We present a new database of absorption and emission-line measurements based on the entire spectral atlas from the Sloan Digital Sky Survey (SDSS) 7th data release of galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting(pPXF) and gas and absorption line fitting (gandalf) IDL codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. Our fit to the stellar continuum uses both standard stellar population models and empirical templates obtained by combining a large number of stellar spectra in order to fit a subsample of high-quality SDSS spectra for quiescent galaxies. Furthermore, our fit to the nebular spectrum includes an exhaustive list of both recombination and forbidden lines. Foreground Galactic extinction is implicitly treated in our models, whereas reddening in the SDSS galaxies is included in the form of a simple dust screen component affecting the entire spectrum that is accompanied by a second reddening component affecting only the ionised gas emission. Most notable of our work is that, we provide quality of the fit to assess reliability of the measurements. The quality assessment can be highly effective for finding new classes of objects. For example, based on the quality assessment around the Ha and [NII] nebular lines, we found approximately 1% of the SDSS spectra which classified as "galaxies" by the SDSS pipeline are in fact type I Seyfert AGN.

  • PDF