• Title/Summary/Keyword: KINEMATICS

Search Result 1,687, Processing Time 0.025 seconds

Characteristics of Symmetric-Shape Parts Shearing on Micro NCT (마이크로 NCT에 의한 대칭형상구멍의 전단특성)

  • Hong N. P.;Kim B. H.;Chang I. B.;Kim H. Y.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.285-291
    • /
    • 2002
  • The shearing process for the sheet metal is normally used in the precision elements such as a frame of TFT-LCD or lead frame of If chips. In these precision elements, the burr formation prevents the system assembly and needs the additional burr removing process. In this paper, we developed the small size NC punching system which has an aligning kinematics between the rectangular shaped punch and die. The punch is driven by an ai cylinder and the sheet metal is moving on the X-Y table system which is driven by two stewing motors. The microprocessor control the whole system and communicate with the monitoring PC by RS232C serial communication protocol. The graphic user interface program in PC monitors nil control the punching system. The cross shaped joint hinge supports the punching die and positioned by two differential screws, whose are installed in perpendicular directions. The aligning between the punch and die is performed using the sheets of half thickness(0.1mm Brass) of the real process for the frame of the TFT-LCD. Using half thickness Brass, the burr formation is magnified and we can decide the aligning direction more easily then using the real thickness(0.2mm) Aluminum. In this paper, the aligning results are measured manually using the SEM photographs and we hope to make the automated aligning procedures using some kinds of image processing techniques.

  • PDF

Development of a Design and Analysis Program for Automatic Transmission Applications to Consider the Planetary Gear Noise and Its Adaptation (자동변속기 유성기어 소음을 고려한 시스템 분석용 프로그램 개발 및 적용에 관한 연구)

  • Lee, Hyun Ku;Lee, Sang Hwa;Kim, Moo Suk;Hong, Sa Man;Kim, Si Woong;Yoo, Dong Kyu;Kwon, Hyun Sik;Kahraman, Ahmet
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.7
    • /
    • pp.487-495
    • /
    • 2015
  • A generalized special program called planetary transmission analysis(here in after PTA) is developed to improve planetary gear noise in automatic transmission. PTA is capable of analyzing any typical one-degree-of-freedom automatic transmission gear train containing any number of simple, compound or complex-compound planetary gear sets. The kinematics module in PTA can compute the rotational speeds of gears and carriers and calculate the order frequencies to predict the planetary noise components. The power flow analysis module performs a complete static force analysis providing forces, moments, or torques of gears, bearings, clutches and connections. Based on the given type and number of planetary gear sets, the search algorithm determines all possible kinematic configurations and gear tooth combinations in a required set of gear ratios, while eliminating whole kinematic redundancies and unfavorable clutching sequences. By using PTA program, planetary internal speeds of new developed automatic transmission are early obtained; therefore, possibility of the noise problem could be predicted in early design stage. As implementing PTA in planetary gear NVH development procedure, planetary gear noise was successfully reduced by 10 dBA.

Visualization of mechanical stresses in expanding cell cluster (세포군집의 확장에 관여하는 물리적 힘의 가시화)

  • Cho, Youngbin;Gweon, Bomi;Ko, Ung Hyun;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.43-48
    • /
    • 2015
  • Collective cell migration is a fundamental phenomenon observed in various biological processes such as development, wound healing, and cancer metastasis. During the collective migration, cells undergo changes in their phenotypes from those of stable to the migratory state via the process called epithelial-mesenchymal transition (EMT). Recent findings in biology and biochemistry have shown that EMT is closely related to the cancer invasion or metastasis, but not much of the correlations in kinematics and physical forces between the neighboring cells are known yet. In this study, we aim to understand the cell migration and stress distribution within the expanding cell cluster. We constructed the in vitro cell cluster on the hydrogel, employed traction force microscopy (TFM) and monolayer stress microscopy (MSM) to visualize the physical forces within the expanding cell monolayer. During the expansion, cells at the cluster edge exhibited enhanced motility and developed focal adhesions that are the essential features of EMT while cells at the core of the cluster maintained the epithelial characteristics. In the aspect of mechanical stress, the cluster edge had the highest traction force of ~90 Pa directed toward the cluster core, which means that cells at the edge actively pull the substrate to make the cluster expansion. The cluster core of the tightly confined cells by neighboring cells had a lower traction force value (~60 Pa) but the highest intercellular normal stress of ~800 Pa because of the accumulation of traction from the edge of the monolayer.

The Difference in the Smoothness of the Movement according to Shoe, Velocity, and Slope during Walking (보행시 신발, 속도, 경사도에 따른 동작의 부드러움 차이)

  • Choi J.S.;Tack G.R.;Yi J.H.;Lee B.S.;Chung S.C.;Sohn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.169-170
    • /
    • 2006
  • The purpose of this study was to evaluate the smoothness of the gait pattern according to shoe, walking speed, and slope. Eleven male university students used three types(running shoes, mounting climbing boots, elevated forefoot walking shoes) of shoes at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2.0, 2.11, 2.33m/s) and gradients (0, 3, 6, 10%) on a treadmill. Three-dimensional motion analysis (Motion Analysis Corp, Santa Rosa, CA, USA) was conducted with 4 Falcon high speed cameras. The results showed that elevated forefoot walking shoes had the lowest value of normalized jerk at the heel, which means that elevated forefoot walking shoes had the smoothest walking pattern at the heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass (COM) at most walking speeds, which means that the smoothness of gait pattern at the center of mass is the lowest for the elevated forefoot walking shoes. This movement at the COM might even have a beneficial effect of activating muscles in the back and abdomen more than other shoes.

  • PDF

Development of Robot Simulator for Palletizing Operation Management S/W and Fast Algorithm for 'PLP' (PLP 를 위한 Fast Algorithm 과 팔레타이징 작업 제어 S/W 를 위한 로봇 시뮬레이터 개발)

  • Lim, Sung-Jin;Kang, Maing-Kyu;Han, Chang-Soo;Song, Young-Hoon;Kim, Sung-Rak;Han, Jeong-Su;Yu, Seung-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.609-616
    • /
    • 2007
  • Palletizing is necessary to promote the efficiency of storage and shipping tasks. These are, however some of the most monotonous, heavy and laborious tasks in the factory. Therefore many types of robot palletizing systems have been developed, but many robot motion commands still depend on the teaching pendent. That is, an operator inputs the motion command lines one by one. It is very troublesome, and most of all, the user must know how to type the code. That is why we propose a new GUI (Graphic User Interface) Palletizing System. To cope with this issue, we proposed a 'PLP' (Pallet Loading Problem) algorithm, Fast Algorithm and realize 3D auto-patterning visualization interface. Finally, we propose the robot palletizing simulator. Internally, the schematic of this simulator is as follows. First, an user inputs the physical information of object. Second, simulator calculates the optimal pattern for the object and visualizes the result. Finally, the calculated position data of object is passed to the robot simulator. To develop the robot simulator, we use an articulated robot, and analyze the kinematics and dynamics. Especially, All problem including thousands of boxes were completely calculated in less than 1 second and resulted in optimal solutions by the Fast Algorithm.

Research on Sports Science of Taekwondo Footwear (태권도화의 운동과학적 연구)

  • Jin, Young-Wan;Park, Seung-Bum
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1775-1778
    • /
    • 2008
  • The purpose of this study was to compare the biomechanical difference of barefoot and two types taekwondo footwear. which will provide scientific data to coaches and players, to further prevent injuries and to improve each players skills. How to an effect on human body which studied a kinematics and kinetics from 8 college students during experiments. This study imposes several conditions by barefoot and two types of taekwondo footwear ran under average $3.82{\pm}0.59$ m/sec for kinetics analysis. The result of comparative analysis can be summarized as below. Friction coefficient analysis showed A Company shoes 0.60 and M Company shoes 0.61. Ground reaction force also showed that statically approximates other results from impact peak timing (p<0.001), Maximum loading rate (p<0.001), Maximum loading rate timing (p<0.001) and impulse of first 20 percent (p<0.001). Moment was M Company shoes bigger than A Company shoes to pronation moment and supination moment.

Acute Changes in Fascicle Behavior and Electromyographic Activity of the Medial Gastrocnemius during Walking in High Heeled Shoes

  • Kim, Jin-Sun;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.135-142
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the acute effect of walking on high heels on the behavior of fascicle length and activation of the lower limb muscles. Methods: Twelve healthy inexperienced high heel wearers (age: $23.1{\pm}2.0yr$, height: $162.4{\pm}4.9cm$, weight: $54.4{\pm}8.5kg$) participated in this study. They walked in high heels (7 cm) and barefoot on a treadmill at their preferred speed. During the gait analysis, the lower limb joint kinematics were obtained using a motion analysis system. In addition, the changes in fascicle length and the level of activation of the medial gastrocnemius (MG) were simultaneously monitored using a real-time ultrasound imaging technique and surface electromyography, respectively. Results: The results of this study show that the MG fascicle operates at a significantly shorter length in high heel walking ($37.64{\pm}8.59mm$ to $43.99{\pm}8.66mm$) in comparison with barefoot walking ($48.26{\pm}9.02mm$ to $53.99{\pm}8.54mm$) (p < .05). In addition, the MG fascicle underwent lengthening during high heel walking with relatively low muscle activation while it remained isometric during barefoot walking with relatively high muscle activation. Conclusion: Wearing high heels alters the operating range of the MG fascicle length and the pattern of muscle activation, suggesting that prolonged wearing of high heels might induce structural alterations of the MG that, in turn, hinder normal functioning of the MG muscle during walking.

Kinematic Comparisons of the Tsukahara Vault between a Top-level Athlete and Sublevel Collegiate Athletes

  • Park, Cheol-Hee;Kim, Young-Kwan;Back, Chang-Yei
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.71-82
    • /
    • 2016
  • Objective: The purpose of this study was to investigate kinematic comparisons of Tsukahara vault in gymnastics between a top-level athlete and sublevel collegiate athletes in order to obtain information on key biomechanical points for successful Tsukahara vaults. Methods: An Olympic gold medalist (height, 160 cm; weight, 52 kg; age, 25 years) and five sublevel collegiate gymnasts (height, $168.2{\pm}3.4cm$; weight, $59.6{\pm}3.1kg$; age, $23.2{\pm}1.6years$) participated in this study. They repeatedly performed Tsukahara vaults including one somersault. Fourteen motion-capturing cameras were used to collect the trajectories of 26 body markers during Tsukahara vaults. Event time, displacement and velocity of the center of mass, joint angles, the distance between the two hands on the horse, and averaged horizontal and vertical impact forces were calculated and compared. Results: The top-level athlete showed a larger range of motion (ROM) of the hip and knee joints compared to sublevel collegiate athletes during board contact. During horse contact, the top-level athlete had a narrow distance between the two hands with extended elbows and shoulders in order to produce a strong blocking force from the horse with a shorter contact time. At the moment of horse take-off, reactive hip extension of the top-level athlete enhanced propulsive take-off velocity and hip posture during post-flight phase. Conclusion: Even though a high velocity of the center of mass is important, the posture and interactive action during horse contact is crucial to post-flight performance and the advanced performance of Tsukahara vaults.

A Study of Calculation Methodology of Vehicle Emissions based on Driver Speed and Acceleration Behavior (차량 주행상태를 고려한 차량 배출가스 산정 모형 구축)

  • Han, Dong-Hui;Lee, Yeong-In;Jang, Hyeon-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.107-120
    • /
    • 2011
  • Traffic signal is one of the major factors that affect the amount of vehicle emissions on urban highway. The amount of vehicle emissions in urban area is highly affected by the vehicle's cruising speeds heavily influenced by the traffic signal lighting conditions. It was attempted in this study to trace the changing patterns of the vehicle emissions by collecting the emission data from a set of simulation studies and by categorizing vehicle cruising conditions into four different groups: idling, acceleration, deceleration, and running at a constant speed. Authors propose a simple emission model prepared based on Kinematic theory. The validation test results showed that the amount of the emission estimated by the proposed model was relatively satisfactory compared to the one of the existing model employing the average speed data only as the determinant.

A Study on the Evaluation of Transverse Residual Stress at the Multi-pass FCA Butt Weldment using FEA (유한요소해석을 이용한 다층 FCA 맞대기 용접부의 횡 방향 잔류응력 평가에 관한 연구)

  • Shin, Sang-Beom;Lee, Dong-Ju;Park, Dong-Hwan
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.26-32
    • /
    • 2010
  • The purpose of this study is to evaluate the residual stresses at the multi-pass FCA weldment using the finite element analysis (FEA). In order to do it, an H-type specimen was selected as a test specimen. The variable used was in-plane restraint intensity. The temperature distribution at the multi-pass FCA butt weldment was evaluated in accordance with the relevant guidance recommended by the KWJS. The effective conductivity for the weld metal corresponding to each welding pass was introduced to control the maximum temperature below the vaporization temperature of weld metal. The heat flux caused by welding arc was assumed to be applied to the weld metal corresponding to welding pass. With heat transfer analysis results, the distribution of transverse residual stresses was evaluated using the thermo-mechanical analysis and compared with the measured results by XRD and uniaxial strain gage. In thermo-mechanical analysis, the plastic strain resetting at the temperature above melting temperature of $1450^{\circ}C$ was considered and the weld metal and base metal was assumed to be bilinear kinematics hardening continuum. According to the comparison between FEA and experiment, transverse residual stresses at the multi-pass FCA butt weldment obtained by FEA had a good agreement with the measured results, regardless of in-plane rigidity. Based on the results, it was concluded that thermo-mechanical FE analysis based on temperature distribution calculated in accordance with the KWJS’s guidance could be used as a tool to predict the distribution of residual stress of the multi-pass FCA butt weldment.