• Title/Summary/Keyword: K-space trajectory

Search Result 250, Processing Time 0.024 seconds

Research and Development Trends of a Hypersonic Glide Vehicle (HGV) (극초음속 활공 비행체(HGV)의 연구개발 동향)

  • Hwang, Ki-Young;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.731-743
    • /
    • 2020
  • The hypersonic glide vehicle ascends to a high altitude by a rocket booster, separates it from the booster, and glides at a hypersonic speed of Mach 5 or higher at an altitude of about 30~70 km, changing its direction in the atmosphere. Since it moves on an unpredictable flight path rather than a parabolic trajectory, it is difficult to intercept with current missile defense systems. The U.S. conducted HTV-2 and AHW flight tests in the early 2010s to confirm the possibility of hypersonic gliding flights, and recently it has been developing hypersonic glide vehicle systems such as LRHW and ARRW. China has conducted several flight tests of the DF-ZF (WU-14) glide vehicle since 2014 and has been operating it with DF-17 missiles. Russia has conducted hypersonic glide vehicle research since the former Soviet Union, but it has repeatedly failed, and recently it has been successfully tested with the Avangard (Yu-71) glide vehicle mounted on the SS-19 ICBM. In this paper, the characteristics, flight test cases, and development trends of hypersonic glide vehicles developed or currently being developed in the United States, China, Russia, Japan, India, and Europe are reviewed and summarized.

Lever Arm Compensation of Reference Trajectory for Flight Performance Evaluation of DGPS/INS installed on Aircraft (항공기에 탑재된 DGPS/INS 복합항법 장치의 비행 시험 성능 평가를 위한 기준궤적의 Lever Arm 보정)

  • Park, Ji-Hee;Lee, Seong-Woo;Park, Deok-Bae;Shin, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1086-1092
    • /
    • 2012
  • It has been studied for DGPS/INS(Differential Global Positioning System/Inertial Navigation System) to offer the more precise and reliable navigation data with the aviation industry development. The flight performance evaluation of navigation system is very significant because the reliability of navigation data directly affect the safety of aircraft. Especially, the high-level navigation system, as DGPS/INS, need more precise flight performance evaluation method. The performance analysis is performed by comparing between the DGPS/INS navigation data and reference trajectory which is more precise than DGPS/INS. The GPS receiver, which is capable of post-processed CDGPS(Carrier-phase DGPS) method, can be used as reference system. Generally, the DGPS/INS is estimated the CG(Center of Gravity) point of aircraft while the reference system is output the position of GPS antenna which is mounted on the outside of aircraft. For this reason, estimated error between DGPS/INS and reference system will include the error due to lever arm. In order to more precise performance evaluation, it is needed to compensate the lever arm. This paper presents procedure and result of flight test which includes lever arm compensation in order to verify reliability and performance of DGPS/INS more precisely.

The Absolute Position Recognition Using the Map in Space for Navigation of a Mobile Robot (초음파센서를 가진 이동로봇의 주행을 위한 지도를 이용한 공간상의 절대위치 인식 실현)

  • Jeong, Joon-Young;Kim, Yong-Yil;Kim, Ji-Hyun;Han, Seok-Jin;Kim, Sang-Gweon;Kim, Pan-Dol;Lee, Hong-Won
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.302-304
    • /
    • 1994
  • In this paper, we introduce the current implementation status of the absolute position recognition technique using sonars for the navigation of a mobile robot. Using this technique, we have developed the supervisory controller of the autonomous vacuum cleaning robot which can recognize the user-specified origin, moves its body to the origin, and follow the specified trajectory starting from the origin. With the satisfactory results, we expect the autonomous cleaning robot to be commercialized in a very near future.

  • PDF

A Study on Optimal Working Path Control of Seven Axes Vertical Type Robot with Translation Joint for Triming Working Automation in Forming Process (단조공정 트리밍작업 자동화를 위한 병진관절을 갖는 7축 다관절 로봇의 최적 작업경로제어에 관한 연구)

  • Kim, Min-Seong;Choi, Min-Hyuk;Bae, Ho-Young;Im, Oh-Deuk;Kang, Jung-Suk;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.53-62
    • /
    • 2018
  • This study propose a new approach to control the optimal working path of vertical type articulated robot with translation joint for trimming working process automation in forging manufacturing process. The basic structure of the proposed robotic joints controller consists of a Proportional-Intergral controller and a Proportional-Derivative controller in parallel. The proposed control scheme takes advantage of the properties of the fuzzy PID controllers. The proposed method is suitable to control of the trajectory and path control in cartesian space for vertical type articulated robot manipulator. The results illustrates that the proposed fuzzy computed torque controller is more stable and robust than the conventional computed torque controller. The reliability is varified by simulation test for vertical type s articulated robot with seven joints including one trqanslation joint.

Flight Dynamics Analyses of a Propeller-Driven Airplane (I): Aerodynamic and Inertial Modeling of the Propeller

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.345-355
    • /
    • 2014
  • This paper focuses on aerodynamic and inertial modeling of the propeller for its applications in flight dynamics analyses of a propeller-driven airplane. Unsteady aerodynamic and inertial loads generated by the propeller are formulated using the blade element method, where the local velocity and acceleration vectors for each blade element are obtained from exact kinematic relations for general maneuvering conditions. Vortex theory is applied to obtain the flow velocities induced by the propeller wake, which are used in the computation of the aerodynamic forces and moments generated by the propeller and other aerodynamic surfaces. The vortex lattice method is adopted to obtain the induced velocity over the wing and empennage components and the related influence coefficients are computed, taking into account the propeller induced velocities by tracing the wake trajectory trailing from each of the propeller blades. Aerodynamic forces and moments of the fuselage and other aerodynamic surfaces are computed by using the wind tunnel database and applying strip theory to incorporate viscous flow effects. The propeller models proposed in this paper are applied to predict isolated propeller performances under steady flight conditions. Trimmed level forward and turn flights are analyzed to investigate the effects of the propeller on the flight characteristics of a propeller-driven light-sports airplane. Flight test results for a series of maneuvering flights using a scaled model are employed to run the flight dynamic analysis program for the proposed propeller models. The simulations are compared with the flight test results to validate the usefulness of the approach. The resultant good correlations between the two data sets shows the propeller models proposed in this paper can predict flight characteristics with good accuracy.

A Study on Adaptive Design of Experiment for Sequential Free-fall Experiments in a Shock Tunnel (충격파 풍동에서의 연속적 자유낙하 실험에 대한 적응적 실험 계획법 적용 연구)

  • Choi, Uihwan;Lee, Juseong;Song, Hakyoon;Sung, Taehyun;Park, Gisu;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.798-805
    • /
    • 2018
  • This study introduces an adaptive design of experiment (DoE) approach for the hypersonic shock-tunnel testing. A series of experiments are conducted to model the pitch moment coefficient of a cone as the function of the angle of attack and the pitch rate. An algorithm to construct the trajectory of the test model from the images obtained by the high-speed camera is developed to effectively analyze multiple time series experimental data. An adaptive DoE procedure to determine the experimental point based on the analysis results of the past experiments using the algorithm is proposed.

Mission Orbit Design of CubeSat Impactor Measuring Lunar Local Magnetic Field

  • Lee, Jeong-Ah;Park, Sang-Young;Kim, Youngkwang;Bae, Jonghee;Lee, Donghun;Ju, Gwanghyeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.127-138
    • /
    • 2017
  • The current study designs the mission orbit of the lunar CubeSat spacecraft to measure the lunar local magnetic anomaly. To perform this mission, the CubeSat will impact the lunar surface over the Reiner Gamma swirl on the Moon. Orbit analyses are conducted comprising ${\Delta}V$ and error propagation analysis for the CubeSat mission orbit. First, three possible orbit scenarios are presented in terms of the CubeSat's impacting trajectories. For each scenario, it is important to achieve mission objectives with a minimum ${\Delta}V$ since the CubeSat is limited in size and cost. Therefore, the ${\Delta}V$ needed for the CubeSat to maneuver from the initial orbit toward the impacting trajectory is analyzed for each orbit scenario. In addition, error propagation analysis is performed for each scenario to evaluate how initial errors, such as position error, velocity error, and maneuver error, that occur when the CubeSat is separated from the lunar orbiter, eventually affect the final impact position. As a result, the current study adopts a CubeSat release from the circular orbit at 100 km altitude and an impact slope of $15^{\circ}$, among the possible impacting scenarios. For this scenario, the required ${\Delta}V$ is calculated as the result of the ${\Delta}V$ analysis. It can be used to practically make an estimate of this specific mission's fuel budget. In addition, the current study suggests error constraints for ${\Delta}V$ for the mission.

Design, Analysis and Experiment of Potato Gun with a Spherical Projectile (구형 탄환을 이용한 감자총의 설계, 해석 및 시험)

  • Kang, Hong-Jae;Kim, Ji-Hwan;Kim, Young-Sik;Son, So-Eun;Choi, Han-Ul;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.796-804
    • /
    • 2013
  • The "Potato Gun," a simple heat engine, is fabricated, tested and analyzed as a part of engineering education program of combustion and propulsion classes. Combustor pressure is predicted by the chemical equilibrium analysis of a constant volume combustor. Then, the internal ballistics, the conversion of thermal energy into the mechanical energy of a projectile, is predicted though the expansion process. The trajectory of a projectile is estimated by considering the aerodynamic effect around the spherical projectile. The energy conversion efficiency and the equivalence ratio of the fuel-air mixture could be estimated by the comparison of the experimental results and the theoretical prediction. The present work would be an example of attracting the interest of students for the application of the engineering principles at undergraduate level by recycling the waste materials.

Astrometric Detectability of Parallax Effect in Gravitational Microlensing Events (중력렌즈 사건의 측성적 시차효과 검출에 대한 연구)

  • HAN CHEONGHO
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.1
    • /
    • pp.15-19
    • /
    • 2000
  • The lens mass determined from the photometrically obtained Einstein time scale suffers from large uncertainty due to the lens parameter degeneracy. The uncertainty can be substantially reduced if the mass is determined from the lens proper motion obtained from astrometric measurements of the source image centroid shifts, ${\delta}{\theta}_c$, by using high precision interferometers from space-based platform such as the Space Interferometry Mission (SIM), and ground-based interferometers soon available on several 8-10m class telescopes. However, for the complete resolution of the lens parameter degeneracy it is required to determine the lens parallax by measuring the parallax-induced deviations in the centroid shifts trajectory, ${\Delta}{\delta}{\theta}_c$ aloe. In this paper, we investigate the detectabilities of ${\delta}{\theta}_c$ and ${\Delta}{\delta}{\theta}_c$ by determining the distributions of the maximum centroid shifts, $f({\delta}{\theta}_{c,max})$, and the average maximum deviations, $(<{\Delta}{\delta}_{c,max}>)$, for different types of Galactic microlensing events caused by various masses. From this investigation, we find that as long as source stars are bright enough for astrometric observations it is expected that $f({\delta}{\theta}_c)$ for most events caused by lenses with masses greater than 0.1 $M_\bigodot$ regardless of the event types can be easily detected from observations by using not only the SIM (with a detection threshold but also the ${\delta}{\theta}_{th}\;\~3{\mu}as)$ but also the ground-based interferometers $(with\;{\delta}{\theta}_{th}\;\~3{\mu}as)$. However, from ground-based observations, it will be difficult to detect ${\Delta}{\delta}{\theta}_c$ for most Galactic bulge self-lensing events, and the detection will be restricted only for small fractions of disk-bulge and halo-LMC events for which the deviations are relatively large. From observations by using the SIM, on the other hand, detecting ${\Delta}{\delta}{\theta}_c$ will be possible for majority of disk and halo events and for a substantial fraction of bulge self-lensing events. For the complete resolution of the lens parameter degeneracy, therefore, SIM observations will be essential.

  • PDF

Sector Based Scanning and Adaptive Active Tracking of Multiple Objects

  • Cho, Shung-Han;Nam, Yun-Young;Hong, Sang-Jin;Cho, We-Duke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.6
    • /
    • pp.1166-1191
    • /
    • 2011
  • This paper presents an adaptive active tracking system with sector based scanning for a single PTZ camera. Dividing sectors on an image reduces the search space to shorten selection time so that the system can cover many targets. Upon the selection of a target, the system estimates the target trajectory to predict the zooming location with a finite amount of time for camera movement. Advanced estimation techniques using probabilistic reason suffer from the unknown object dynamics and the inaccurate estimation compromises the zooming level to prevent tracking failure. The proposed system uses the simple piecewise estimation with a few frames to cope with fast moving objects and/or slow camera movements. The target is tracked in multiple steps and the zooming time for each step is determined by maximizing the zooming level within the expected variation of object velocity and detection. The number of zooming steps is adaptively determined according to target speed. In addition, the iterative estimation of a zooming location with camera movement time compensates for the target prediction error due to the difference between speeds of a target and a camera. The effectiveness of the proposed method is validated by simulations and real time experiments.