• Title/Summary/Keyword: K-NN 분류 모델

Search Result 39, Processing Time 0.024 seconds

An Exploratory Study on Survey Data Categorization using DDI metadata (메타데이터를 활용한 조사자료의 문서범주화에 관한 연구)

  • Park, Ja-Hyun;Song, Min
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2012.08a
    • /
    • pp.73-76
    • /
    • 2012
  • 본 연구는 DDI 메타데이터를 활용하여 귀납적 학습모델(supervised learning model)의 문서범주화 실험을 수행함으로써 조사자료의 체계적이고 효율적인 분류작업을 설계하는데 그 목적이 있다. 구체적으로 조사자료의 DDI 메타데이터를 대상으로 단순 TF 가중치, TF-IDF 가중치, Okapi TF 가중치에 따른 나이브 베이즈(Naive Bayes), kNN(k nearest neighbor), 결정트리(Decision tree) 분류기의 성능비교 실험을 하였다. 그 결과, 나이브 베이즈가 가장 좋은 성능을 보였으며, 단순 TF 가중치와 TF-IDF 가중치는 나이브 베이즈, kNN, 결정트리 분류기에서 동일한 성능을 보였으나, Okapi TF 가중치의 경우 나이브 베이즈에서 가장 좋은 성능을 보였다.

  • PDF

A Study on Classification Models for Predicting Bankruptcy using XAI (XAI 를 활용한 기업 부도예측 분류모델 연구)

  • Kim, Jihong;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.571-573
    • /
    • 2022
  • 최근 금융기관에서는 축적된 금융 빅데이터를 활용하여 차별화된 서비스를 강화하고 있다. 기업고객에 투자하기 위해서는 보다 정밀한 기업분석이 필요하다. 본 연구는 대만기업 6,819개의 95개 재무데이터를 가지고, 비대칭 데이터 문제해결, 데이터 표준화 등 데이터 전처리 작업을 하였다. 해당 데이터는 로지스틱 회기, SVM, K-NN, 나이브 베이즈, 의사결정나무, 랜덤포레스트 등 9가지 분류모델에 5겹 교차검증을 적용하여 학습한 후 모델 성능을 비교하였다. 이 중에서 성능이 가장 우수한 분류모델을 선택하여 예측 결정 이유를 판단하고자 설명 가능한 인공지능(XAI)을 적용하여 예측 결과에 대한 설명을 부여하여 이를 분석하였다. 본 연구를 통해 데이터 전처리에서부터 모델 예측 결과 설명에 이르는 분류예측모델의 전주기를 자동화하는 시스템을 제시하고자 한다.

Comparison of Machine Learning Classification Models for the Development of Simulators for General X-ray Examination Education (일반엑스선검사 교육용 시뮬레이터 개발을 위한 기계학습 분류모델 비교)

  • Lee, In-Ja;Park, Chae-Yeon;Lee, Jun-Ho
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.111-116
    • /
    • 2022
  • In this study, the applicability of machine learning for the development of a simulator for general X-ray examination education is evaluated. To this end, k-nearest neighbor(kNN), support vector machine(SVM) and neural network(NN) classification models are analyzed to present the most suitable model by analyzing the results. Image data was obtained by taking 100 photos each corresponding to Posterior anterior(PA), Posterior anterior oblique(Obl), Lateral(Lat), Fan lateral(Fan lat). 70% of the acquired 400 image data were used as training sets for learning machine learning models and 30% were used as test sets for evaluation. and prediction model was constructed for right-handed PA, Obl, Lat, Fan lat image classification. Based on the data set, after constructing the classification model using the kNN, SVM, and NN models, each model was compared through an error matrix. As a result of the evaluation, the accuracy of kNN was 0.967 area under curve(AUC) was 0.993, and the accuracy of SVM was 0.992 AUC was 1.000. The accuracy of NN was 0.992 and AUC was 0.999, which was slightly lower in kNN, but all three models recorded high accuracy and AUC. In this study, right-handed PA, Obl, Lat, Fan lat images were classified and predicted using the machine learning classification models, kNN, SVM, and NN models. The prediction showed that SVM and NN were the same at 0.992, and AUC was similar at 1.000 and 0.999, indicating that both models showed high predictive power and were applicable to educational simulators.

Evaluation of Polycystic Ovary Syndrome Classification Model Using Machine Learning (머신러닝을 이용한 다낭성 난소 증후군 분류 모델 평가)

  • So-Young Jo;Soo-Young Ye
    • Journal of Radiation Industry
    • /
    • v.18 no.3
    • /
    • pp.173-176
    • /
    • 2024
  • In this paper, general characteristics, blood tests, and ultrasound examination results were used to classify the presence of polycystic ovary syndrome (PCOS). The classification algorithms used were SVM (Support Vector Machine) and k-NN (k-Nearest Neighbors). Out of a total of 300 data samples, 210 were used as training data and 90 as test data. The results showed that SVM achieved higher accuracy compared to k-NN, confirming its greater utility in diagnosing the presence of PCOS. Future research is expected to improve classification performance by incorporating various additional indicators and securing more data. Additionally, it is expected to serve as a foundational resource for predicting and classifying other diseases.

Enhancing Classification Performance of Temporal Keyword Data by Using Moving Average-based Dynamic Time Warping Method (이동 평균 기반 동적 시간 와핑 기법을 이용한 시계열 키워드 데이터의 분류 성능 개선 방안)

  • Jeong, Do-Heon
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.4
    • /
    • pp.83-105
    • /
    • 2019
  • This study aims to suggest an effective method for the automatic classification of keywords with similar patterns by calculating pattern similarity of temporal data. For this, large scale news on the Web were collected and time series data composed of 120 time segments were built. To make training data set for the performance test of the proposed model, 440 representative keywords were manually classified according to 8 types of trend. This study introduces a Dynamic Time Warping(DTW) method which have been commonly used in the field of time series analytics, and proposes an application model, MA-DTW based on a Moving Average(MA) method which gives a good explanation on a tendency of trend curve. As a result of the automatic classification by a k-Nearest Neighbor(kNN) algorithm, Euclidean Distance(ED) and DTW showed 48.2% and 66.6% of maximum micro-averaged F1 score respectively, whereas the proposed model represented 74.3% of the best micro-averaged F1 score. In all respect of the comprehensive experiments, the suggested model outperformed the methods of ED and DTW.

Learning Bayesian Networks for Text Documents Classification (텍스트 문서 분류를 위한 베이지안망 학습)

  • 황규백;장병탁;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.262-264
    • /
    • 2000
  • 텍스트 문서 분류는 텍스트 형태로 주어진 문서를 종류별로 구분하는 작업으로 웹페이지 검색, 뉴스 그룹 검색, 메일 필터링 등이 분야에 응용될 수 있는 기반 작업이다. 지금까지 문서를 분류하는데는 k-NN, 신경망 등 여러 가지 기계학습 기법이 이용되어 왔다. 이 논문에서는 베이지안망을 이용해서 텍스트 문서 분류를 행한다. 베이지안망은 다수의 변수들간의 확률적 관계를 표현하는 그래프 모델로 DAG 형태인 망 구조와 각 노드에 연관된 지역확률분포로 구성된다. 그래프 모델을 사용할 경우 학습에 이용되는 각 속성들간의 관계를 사람이 알아보기 쉬운 형태로 학습할 수 있다는 장점이 있다. 실험 데이터로는 Reuters-21578 문서분류데이터를 이용했으며 베이안망의 성능은 나이브 베이즈 분류기와 비슷했다.

  • PDF

Application and Analysis of Machine Learning for Discriminating Image Copyright (이미지 저작권 판별을 위한 기계학습 적용과 분석)

  • Kim, Sooin;Lee, Sangwoo;Kim, Hakhee;Kim, Wongyum;Hwang, Doosung
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.899-902
    • /
    • 2021
  • 본 논문은 이미지 저작권 유무 판별을 분류 문제로 정의하고 기계학습과 합성곱 신경망 모델을 적용하여 해결한다. 학습을 위해 입력 데이터를 고정된 크기로 변환하고 정규화 과정을 수행하여 학습 데이터셋을 준비한다. 저작권 유무 판별 실험에서 SVM, k-NN, 랜덤포레스트, VGG-Net 모델의 분류 성능을 비교 분석한다. VGG-Net C 모델의 결과가 다른 알고리즘과 비교 시 10.65% 높은 성능을 나타냈으며 배치 정규화 층을 이용하여 과적합 현상을 개선했다.

Feature Selection for Multi-Class Genre Classification using Gaussian Mixture Model (Gaussian Mixture Model을 이용한 다중 범주 분류를 위한 특징벡터 선택 알고리즘)

  • Moon, Sun-Kuk;Choi, Tack-Sung;Park, Young-Cheol;Youn, Dae-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.965-974
    • /
    • 2007
  • In this paper, we proposed the feature selection algorithm for multi-class genre classification. In our proposed algorithm, we developed GMM separation score based on Gaussian mixture model for measuring separability between two genres. Additionally, we improved feature subset selection algorithm based on sequential forward selection for multi-class genre classification. Instead of setting criterion as entire genre separability measures, we set criterion as worst genre separability measure for each sequential selection step. In order to assess the performance proposed algorithm, we extracted various features which represent characteristics such as timbre, rhythm, pitch and so on. Then, we investigate classification performance by GMM classifier and k-NN classifier for selected features using conventional algorithm and proposed algorithm. Proposed algorithm showed improved performance in classification accuracy up to 10 percent for classification experiments of low dimension feature vector especially.

Feature Analysis of Multi-Channel Time Series EEG Based on Incremental Model (점진적 모델에 기반한 다채널 시계열 데이터 EEG의 특징 분석)

  • Kim, Sun-Hee;Yang, Hyung-Jeong;Ng, Kam Swee;Jeong, Jong-Mun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.63-70
    • /
    • 2009
  • BCI technology is to control communication systems or machines by brain signal among biological signals followed by signal processing. For the implementation of BCI systems, it is required that the characteristics of brain signal are learned and analyzed in real-time and the learned characteristics are applied. In this paper, we detect feature vector of EEG signal on left and right hand movements based on incremental approach and dimension reduction using the detected feature vector. In addition, we show that the reduced dimension can improve the classification performance by removing unnecessary features. The processed data including sufficient features of input data can reduce the time of processing and boost performance of classification by removing unwanted features. Our experiments using K-NN classifier show the proposed approach 5% outperforms the PCA based dimension reduction.

A dominant hyperrectangle generation technique of classification using IG partitioning (정보이득 분할을 이용한 분류기법의 지배적 초월평면 생성기법)

  • Lee, Hyeong-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.149-156
    • /
    • 2014
  • NGE(Nested Generalized Exemplar Method) can increase the performance of the noisy data at the same time, can reduce the size of the model. It is the optimal distance-based classification method using a matching rule. NGE cross or overlap hyperrectangles generated in the learning has been noted to inhibit the factors. In this paper, We propose the DHGen(Dominant Hyperrectangle Generation) algorithm which avoids the overlapping and the crossing between hyperrectangles, uses interval weights for mixed hyperrectangles to be splited based on the mutual information. The DHGen improves the classification performance and reduces the number of hyperrectangles by processing the training set in an incremental manner. The proposed DHGen has been successfully shown to exhibit comparable classification performance to k-NN and better result than EACH system which implements the NGE theory using benchmark data sets from UCI Machine Learning Repository.