• Title/Summary/Keyword: K shortest paths problem

Search Result 36, Processing Time 0.022 seconds

A New Algorithm for K Shortest Paths Problem (복수최단경로의 새로운 최적해법)

  • 장병만
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.3
    • /
    • pp.79-94
    • /
    • 2001
  • This paper presents a new algorithm for the K shortest paths Problem which develops initial K shortest paths, and repeat to expose hidden shortest paths with dual approach and to replace the longest path in the present K paths. The initial solution comprises K shortest paths among shortest paths to traverse each arc in a Double Shortest Arborescence which is made from bidirectional Dijkstra algorithm. When a crossing node that have two or more inward arcs is found at least three time by turns in this K shortest paths, there may be some hidden paths which are shorter than present k-th path. To expose a hidden shortest path, one inward arc of this crossing node is chose by means of minimum detouring distance calculated with dual variables, and then the hidden shortest path is exposed with joining a detouring subpath from source to this inward arc and a spur of a feasible path from this crossing node to sink. If this exposed path is shorter than the k-th path, the exposed path replaces the k-th path. This algorithm requires worst case time complexity of O(Kn$^2$), and O(n$^2$) in the case k$\leq$3.

  • PDF

AN OPTIMAL PARALLEL ALGORITHM FOR SOLVING ALL-PAIRS SHORTEST PATHS PROBLEM ON CIRCULAR-ARC GRAPHS

  • SAHA ANITA;PAL MADHUMANGAL;PAL TAPAN K.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.1-23
    • /
    • 2005
  • The shortest-paths problem is a fundamental problem in graph theory and finds diverse applications in various fields. This is why shortest path algorithms have been designed more thoroughly than any other algorithm in graph theory. A large number of optimization problems are mathematically equivalent to the problem of finding shortest paths in a graph. The shortest-path between a pair of vertices is defined as the path with shortest length between the pair of vertices. The shortest path from one vertex to another often gives the best way to route a message between the vertices. This paper presents an $O(n^2)$ time sequential algorithm and an $O(n^2/p+logn)$ time parallel algorithm on EREW PRAM model for solving all pairs shortest paths problem on circular-arc graphs, where p and n represent respectively the number of processors and the number of vertices of the circular-arc graph.

A Study on the New Algorithm for Shortest Paths Problem (복수 최단 경로 문제의 새로운 해법 연구)

  • Chang, Byung-Man
    • Korean Management Science Review
    • /
    • v.15 no.2
    • /
    • pp.229-237
    • /
    • 1998
  • This paper presents a new algorithm for the K Shortest Paths Problem which is developed with a Double Shortest Arborescence and an inward arc breaking method. A Double Shortest Arborescence is made from merging a forward shortest arborescence and a backward one with Dijkstra algorithm. and shows us information about each shorter path to traverse each arc. Then K shorter paths are selected in ascending order of the length of each short path to traverse each arc, and some paths of the K shorter paths need to be replaced with some hidden shorter paths in order to get the optimal paths. And if the cross nodes which have more than 2 inward arcs are found at least three times in K shorter path, the first inward arc of the shorter than the Kth shorter path, the exposed path replaces the Kth shorter path. This procedure is repeated until cross nodes are not found in K shorter paths, and then the K shortest paths problem is solved exactly. This algorithm are computed with complexity o($n^3$) and especially O($n^2$) in the case K=3.

  • PDF

A Study on a new Algorithm for K Shortest Paths Problem (복수 최단 경로의 새로운 해법에 관한 연구)

  • Chang, Byung-Man
    • Korean Management Science Review
    • /
    • v.25 no.2
    • /
    • pp.81-88
    • /
    • 2008
  • This paper presents a new algorithm for the K shortest paths problem in a network. After a shortest path is produced with Dijkstra algorithm. detouring paths through inward arcs to every vertex of the shortest path are generated. A length of a detouring path is the sum of both the length of the inward arc and the difference between the shortest distance from the origin to the head vertex and that to the tail vertex. K-1 shorter paths are selected among the detouring paths and put into the set of K paths. Then detouring paths through inward arcs to every vertex of the second shortest path are generated. If there is a shorter path than the current Kth path in the set. this path is placed in the set and the Kth path is removed from the set, and the paths in the set is rearranged in the ascending order of lengths. This procedure of generating the detouring paths and rearranging the set is repeated until the $K^{th}-1$ path of the set is obtained. The computational results for networks with about 1,000,000 nodes and 2,700,000 arcs show that this algorithm can be applied to a problem of generating the detouring paths in the metropolitan traffic networks.

A Study on New Algorithm for K Shortest Paths Problem (복수최단경로의 새로운 해법 연구)

  • Chang ByungMan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.8-14
    • /
    • 2002
  • This article presents a new algorithm for the K Shortest Paths Problem which develops initial K shortest paths, and repeal to expose hidden shortest paths with dual approach and to replace the longest path in the present K paths. The initial solution which comprises K shortest paths among shortest paths to traverse each arc is made from bidirectional Dijkstra algorithm. When a crossing node that have two or more inward arcs is found at least three time by turns in this K shortest paths, one inward arc of this crossing node, which has minimum detouring distance, is chosen, and a new path is exposed with joining a detouring subpath from source to this inward arc and a spur of a feasible path from this crossing node to sink. This algorithm, requires worst case time complexity of $O(Kn^2),\;and\;O(n^2)$ in the case $K{\leq}3$.

  • PDF

A Study on a New Algorithm for K Shortest Detour Path Problem in a Directed Network (유방향의 복수 최단 우회 경로 새로운 해법 연구)

  • Chang, Byung-Man
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.60-66
    • /
    • 2006
  • This paper presents a new algorithm for the K shortest path problem in a directed network. After a shortest path is produced with Dijkstra algorithm, detouring paths through inward arcs to every vertex of the shortest path are generated. A length of a detouring path is the sum of both the length of the inward arc and the difference between the shortest distance from the origin to the head vertex and that to the tail vertex. K-1 shorter paths are selected among the detouring paths and put into the set of K paths. Then detouring paths through inward arcs to every vertex of the second shortest path are generated. If there is a shorter path than the current Kth path in the set, this path is placed in the set and the Kth path is removed from the set, and the paths in the set is rearranged in the ascending order of lengths. This procedure of generating the detouring paths and rearranging the set is repeated for the K-1 st path of the set. This algorithm can be applied to a problem of generating the detouring paths in the navigation system for ITS and also for vehicle routing problems.

  • PDF

Determination of the Shortest Transportation Path in Wartime (전시 최단수송경로 선정)

  • Yun Jong-Ok;Ha Seok-Tae
    • Journal of the military operations research society of Korea
    • /
    • v.17 no.2
    • /
    • pp.72-89
    • /
    • 1991
  • In transportation network problems, it is often desirable to select multiple number of the shortect paths. On problems of finding these paths, algorithms have been developed to choose single shortest path, k-shortest paths and k-shortest paths via p-specified nodes in a network. These problems consider the time as the main factor. In wartime, we must consider availability as well as time to determine the shortest transportation path, since we must take into account enemy's threat. Therefore, this paper addresses the problem of finding the shortest transportation path considering both time and availability. To accomplish the objective of this study, values of k-shortest paths are computed using the algorithm for finding the k-shortest paths. Then availabilties of those paths are computed through simulation considering factors such as rates of suffering attack, damage and repair rates of the paths. An optimal path is selected using any one of the four decision rules that combine the value and availability of a path.

  • PDF

A Development of Algorithm for Determining the k Shortest Paths Visiting p Specified Nodes in a Network (p개 특정지점을 경유하는 k-최단경로 알고리즘 개발)

  • Kim Yun-Gil;Min Gye-Ryo
    • Journal of the military operations research society of Korea
    • /
    • v.16 no.2
    • /
    • pp.105-117
    • /
    • 1990
  • In the transportation network problems, it is often more desirable to select multiple number of optimal parths to prepare for additional constratints being imposed than to choose single optimal path. This paper addresses 'the problem of finding the k-shortest paths visiting p-specified nodes in a network'. The solution method is derived and the example of application is shown. The keypoint for determining the k-shortest paths via p-specified nodes is to combine the Shier's k-shortest path algorithm and the principle of optimality of dynamic programming method. Finally, for a transportation network problem consisting of national main routes, the k-shortest paths via some specified cites are obtained by using the solution method developed here.

  • PDF

An Efficient Implementation of the MPS algorithm for the K-Shortest Path Problem (K-최단경로문제를 위한 MPS 방법의 효율적인 구현)

  • 도승용
    • Journal of the military operations research society of Korea
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • In this paper, we are concerned with the K-shortest loopless path problem. The MPS algorithm, recently proposed by Martins et al., finds paths efficiently because it solves the shortest path problem only one time unlike other algorithms. But its computational complexity has not been known yet. We propose a few techniques by which the MPS algorithm can be implemented efficiently. First, we use min-heap data structure for the storage of candidate paths in order to reduce searching time for finding minimum distance path. Second, we prevent the eliminated paths from reentering in the list of candidate paths by lower bounding technique. Finally, we choose the source mode as a deviation node, by which selection time for the deviation node is reduced and the performance is improved in spite of the increase of the total number of candidate paths.

  • PDF

An Efficient Distributed Algoritm for the Weighted Shortest-path Updating Problem (최단 경로 갱신문제를 해결하는 분산알고리듬)

  • Park, Jeong-Ho;Lee, Gyeong-O;Gang, Gyu-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.6
    • /
    • pp.1778-1784
    • /
    • 2000
  • We consider the weighted shortest path updating problem, that is, the problem to reconstruct the weighted shortest paths in response to topology change of the network. This appear proposes a distributed algorithms that reconstructs the weighted shortest paths after several processors and links are added and deleted. its message complexity and ideal-time complexity are O(p$^2$+q+n') and O(p$^2$+q+n') respectively, where n' is the number of processors in the network after the topology change, q is the number of added links, and p is the total number of processors in he biconnected components (of the network before the topology change) including the deleted links or added links.

  • PDF