Journal of the Korean Operations Research and Management Science Society
/
v.26
no.3
/
pp.79-94
/
2001
This paper presents a new algorithm for the K shortest paths Problem which develops initial K shortest paths, and repeat to expose hidden shortest paths with dual approach and to replace the longest path in the present K paths. The initial solution comprises K shortest paths among shortest paths to traverse each arc in a Double Shortest Arborescence which is made from bidirectional Dijkstra algorithm. When a crossing node that have two or more inward arcs is found at least three time by turns in this K shortest paths, there may be some hidden paths which are shorter than present k-th path. To expose a hidden shortest path, one inward arc of this crossing node is chose by means of minimum detouring distance calculated with dual variables, and then the hidden shortest path is exposed with joining a detouring subpath from source to this inward arc and a spur of a feasible path from this crossing node to sink. If this exposed path is shorter than the k-th path, the exposed path replaces the k-th path. This algorithm requires worst case time complexity of O(Kn$^2$), and O(n$^2$) in the case k$\leq$3.
The shortest-paths problem is a fundamental problem in graph theory and finds diverse applications in various fields. This is why shortest path algorithms have been designed more thoroughly than any other algorithm in graph theory. A large number of optimization problems are mathematically equivalent to the problem of finding shortest paths in a graph. The shortest-path between a pair of vertices is defined as the path with shortest length between the pair of vertices. The shortest path from one vertex to another often gives the best way to route a message between the vertices. This paper presents an $O(n^2)$ time sequential algorithm and an $O(n^2/p+logn)$ time parallel algorithm on EREW PRAM model for solving all pairs shortest paths problem on circular-arc graphs, where p and n represent respectively the number of processors and the number of vertices of the circular-arc graph.
This paper presents a new algorithm for the K Shortest Paths Problem which is developed with a Double Shortest Arborescence and an inward arc breaking method. A Double Shortest Arborescence is made from merging a forward shortest arborescence and a backward one with Dijkstra algorithm. and shows us information about each shorter path to traverse each arc. Then K shorter paths are selected in ascending order of the length of each short path to traverse each arc, and some paths of the K shorter paths need to be replaced with some hidden shorter paths in order to get the optimal paths. And if the cross nodes which have more than 2 inward arcs are found at least three times in K shorter path, the first inward arc of the shorter than the Kth shorter path, the exposed path replaces the Kth shorter path. This procedure is repeated until cross nodes are not found in K shorter paths, and then the K shortest paths problem is solved exactly. This algorithm are computed with complexity o($n^3$) and especially O($n^2$) in the case K=3.
This paper presents a new algorithm for the K shortest paths problem in a network. After a shortest path is produced with Dijkstra algorithm. detouring paths through inward arcs to every vertex of the shortest path are generated. A length of a detouring path is the sum of both the length of the inward arc and the difference between the shortest distance from the origin to the head vertex and that to the tail vertex. K-1 shorter paths are selected among the detouring paths and put into the set of K paths. Then detouring paths through inward arcs to every vertex of the second shortest path are generated. If there is a shorter path than the current Kth path in the set. this path is placed in the set and the Kth path is removed from the set, and the paths in the set is rearranged in the ascending order of lengths. This procedure of generating the detouring paths and rearranging the set is repeated until the $K^{th}-1$ path of the set is obtained. The computational results for networks with about 1,000,000 nodes and 2,700,000 arcs show that this algorithm can be applied to a problem of generating the detouring paths in the metropolitan traffic networks.
Proceedings of the Korean Operations and Management Science Society Conference
/
2002.05a
/
pp.8-14
/
2002
This article presents a new algorithm for the K Shortest Paths Problem which develops initial K shortest paths, and repeal to expose hidden shortest paths with dual approach and to replace the longest path in the present K paths. The initial solution which comprises K shortest paths among shortest paths to traverse each arc is made from bidirectional Dijkstra algorithm. When a crossing node that have two or more inward arcs is found at least three time by turns in this K shortest paths, one inward arc of this crossing node, which has minimum detouring distance, is chosen, and a new path is exposed with joining a detouring subpath from source to this inward arc and a spur of a feasible path from this crossing node to sink. This algorithm, requires worst case time complexity of $O(Kn^2),\;and\;O(n^2)$ in the case $K{\leq}3$.
Proceedings of the Korean Operations and Management Science Society Conference
/
2006.11a
/
pp.60-66
/
2006
This paper presents a new algorithm for the K shortest path problem in a directed network. After a shortest path is produced with Dijkstra algorithm, detouring paths through inward arcs to every vertex of the shortest path are generated. A length of a detouring path is the sum of both the length of the inward arc and the difference between the shortest distance from the origin to the head vertex and that to the tail vertex. K-1 shorter paths are selected among the detouring paths and put into the set of K paths. Then detouring paths through inward arcs to every vertex of the second shortest path are generated. If there is a shorter path than the current Kth path in the set, this path is placed in the set and the Kth path is removed from the set, and the paths in the set is rearranged in the ascending order of lengths. This procedure of generating the detouring paths and rearranging the set is repeated for the K-1 st path of the set. This algorithm can be applied to a problem of generating the detouring paths in the navigation system for ITS and also for vehicle routing problems.
Journal of the military operations research society of Korea
/
v.17
no.2
/
pp.72-89
/
1991
In transportation network problems, it is often desirable to select multiple number of the shortect paths. On problems of finding these paths, algorithms have been developed to choose single shortest path, k-shortest paths and k-shortest paths via p-specified nodes in a network. These problems consider the time as the main factor. In wartime, we must consider availability as well as time to determine the shortest transportation path, since we must take into account enemy's threat. Therefore, this paper addresses the problem of finding the shortest transportation path considering both time and availability. To accomplish the objective of this study, values of k-shortest paths are computed using the algorithm for finding the k-shortest paths. Then availabilties of those paths are computed through simulation considering factors such as rates of suffering attack, damage and repair rates of the paths. An optimal path is selected using any one of the four decision rules that combine the value and availability of a path.
Journal of the military operations research society of Korea
/
v.16
no.2
/
pp.105-117
/
1990
In the transportation network problems, it is often more desirable to select multiple number of optimal parths to prepare for additional constratints being imposed than to choose single optimal path. This paper addresses 'the problem of finding the k-shortest paths visiting p-specified nodes in a network'. The solution method is derived and the example of application is shown. The keypoint for determining the k-shortest paths via p-specified nodes is to combine the Shier's k-shortest path algorithm and the principle of optimality of dynamic programming method. Finally, for a transportation network problem consisting of national main routes, the k-shortest paths via some specified cites are obtained by using the solution method developed here.
Journal of the military operations research society of Korea
/
v.25
no.1
/
pp.29-36
/
1999
In this paper, we are concerned with the K-shortest loopless path problem. The MPS algorithm, recently proposed by Martins et al., finds paths efficiently because it solves the shortest path problem only one time unlike other algorithms. But its computational complexity has not been known yet. We propose a few techniques by which the MPS algorithm can be implemented efficiently. First, we use min-heap data structure for the storage of candidate paths in order to reduce searching time for finding minimum distance path. Second, we prevent the eliminated paths from reentering in the list of candidate paths by lower bounding technique. Finally, we choose the source mode as a deviation node, by which selection time for the deviation node is reduced and the performance is improved in spite of the increase of the total number of candidate paths.
The Transactions of the Korea Information Processing Society
/
v.7
no.6
/
pp.1778-1784
/
2000
We consider the weighted shortest path updating problem, that is, the problem to reconstruct the weighted shortest paths in response to topology change of the network. This appear proposes a distributed algorithms that reconstructs the weighted shortest paths after several processors and links are added and deleted. its message complexity and ideal-time complexity are O(p$^2$+q+n') and O(p$^2$+q+n') respectively, where n' is the number of processors in the network after the topology change, q is the number of added links, and p is the total number of processors in he biconnected components (of the network before the topology change) including the deleted links or added links.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.