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Abstract

This article presents a new algorithm for the K Shortest
Paths Problem which develops initial K shortest paths, and
repeat to expose hidden shortest paths with dual approach
and to replace the longest path in the present K paths. The
initial solution which comprises K shortest paths among
shortest paths to traverse each arc is made from
bidirectional Dijkstra algorithm. When a crossing node that
have two or more inward arcs is found at least three time
by turns in this K shortest paths, one inward arc of this
crossing node, which has minimum detouring distance, is
chosen , and a new path is exposed with joining a detouring
subpath from source to this inward arc and a spur of a
feasible path from this crossing node to sink. This algorithn}
requires worst case time complexity of O (Kn’ ), and O(n
) in the case K <3.

Keywords : K shortest paths problem, Shortest
aborescence, Dijkstra method, Dual
approach

1. Introduction

This paper presents a problem of finding K shortest simple
paths which has minimum weight in a graph G=(N, A)
which has node-set N of cardinality n and arc-set A =(c
ij ) of cardinality m with positive length. In the K shortest
paths problem, for a given positive integer K < n and a given
source-destination pair in directed graphs. The paths should
be simple means that no node can be repeated.

This K shortest paths problem is useful to calculate the
all pair of K shortest paths for the automatic vehicle
guidance system in the Intelligent Transport System (ITS)
[14], transportation planning analysis, and shipping goods
through a distribution network, and is a well-studied graph
optimization problem that is encountered in numerous
application in telecommunications , VLSI design [9] and
SO on.

There are some methods which have been proposed for
solving this problem.

Lawler [10, 11] presented a search tree type algorithm
with complexity O (Kn').

Dreyfus[4] presented these K shortest paths from a source
%O?[E;’ tog)each of the other n- I nodes with time complexity

n").

Yen [16] developed an O (K n®) algorithm that repeats
to search candidate shortest paths with breaking arc and
merging the root and the minimurm spur in each iteration,
and to select the shortest one of them on the direct network
and the nondirect network.

Hadjiconstantinou ang Christofides [7], and Katoh et al.
[8] presented an O (K n*) algorithm that gets the shortest
path from origin s to destination ¢, searches three types of
shortest detouring path from a node in the shortest path to
destination, selects the shortest path among all detours, and
iteratively repeats the above procedure.

Almost studies till now have made one shortest path and

after then they repeat to search the next shortest path one
by one with their own methods. But this article presents
another algorithm which builds near optimal K shortest
paths initially, and improves the initial solution.
This section provides the initial solution procedure for the
K shortest paths problem.
We require the following notation :
T (s ) foreward shortest arborescence from s
to every node ;
T (t) reverse shortest arborescence from ¢
to every node ;
T (s, t) adouble shortest arborescence made by merging
T(s)and T (t);

T the length from s to node i in T (s);

8; the length from ¢ to node { in T (t) ;

fi the predecessor of node i in T (s);

h; the successor of node i in T (&) ;

P¥ the K- th shortest path from s to t in the /-th
improved feasible solution
(1>1);

FP(g, i,j) the shortest subpath from node g through node
{ to node j

FP(g(1,j)) the shortest subpath from node g through arc
(i, j) to node j ;
SP (u, v) the shortest path from s to ¢ through arc (u,v) ;
HP(g,i, j) the shortest path from node s to node ¢ through
. arc(g, i) and arc;c( i, j) or subpath(i, j) ;
LP(P " ) the length of P ;
P(i) the shortest path from node s to node i in 7' (s) ;
Ifc'(j) the shortest path from node j to node ¢ in 7'(t) ;
v (i) the i~th node in P % ;
KSP, the I-th improvejd solbltion
paths, KSP;={P 4, P 7, ,P
EP; the /-th . exposed hidden path which is shorter
than P 7 ;
IA(j, r) the r-th inward arc of node j;
OA(j, r) the r-th outward arc or outward sub
path from node J ;

(se;(t) of K shortest

2. Initial Solution Procedure

It's well known that the shortest paths from node s to all
other nodes in G can be represented by the shortest path
arborescence T (s), and the unique path from s to ¢ in this
arborescence tree, denoted by s LY. ¢ represents the
shortest path from s to ¢. Therefore,

PI: SL(S)*t: th

We can find T(s) and T (t) using Dijkstra’s method
forward from s and backward from ¢ separately. With the
bidirectional Dijkstra’s algorithm, we can simultaneously
apply the forward Dijkstra’s algorithm from node s and the
reverse Dijkstra’s algorithm from node ¢.

When T (s) and T (t) can be merged, T (s, t) is produced,
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and in which we can get the informations about each
shortest path SP (u, v). from s to t to pass through each
arc (u, v), and the length LP (SP(u, v)) of the shortest path
SP (u, v).

In T'(s, t), the shortest path from node s to node ¢ through
node i is formed with the path P(i) U P(i) and the shortest
path from node s to node ¢ through an arc (i, j), node i in
T (s ) and node j in T (t ) is formed using the path P (i
JU(, j )UPY( ). This T (s,t ) can be called a Double
Shortest Arborescence(DSA).

Then SP (u, v ) can be described with

s TG Tk
The length of SP (u, v ), LP (SP (u, v )),
LP(SP (u,v )= nm,+c,,+6, (1.1

(3,30) (12,18)

(14,6)
(b) T(s, t), Double Shortest Arborescence

[Figure 11 An example network and its 7(s,t)

Therefore an initial solution of a K shortest paths problem
can be found by searching for the k shortest paths from T
(s,t) in ascending order of the length of the paths SP(uv)s.
This solution provides an upper bound on the K shortest
paths solutions valyes. 5

The KSP, = (P ', P ?... P°} for K=5 shortest paths
problem in the network of [Flgure 1] 1§ as follows:

Pl 1-3-4-7-8 LP (P} )=20
P§1-478, LP (P )=22
PY%:1-3-7-8, LP (P )=24
P 1—3468 LP (P % )=30
P%:1-2-6 LP (P°)=33

This IgSP may, not be an optimal solutlon KSP comprises
(P P~ P %} which is the set of k apparent shortest
paths that pass from s to ¢ through each specified arc. Some
paths in the KSP are comprised in the optimal solution and
the others may not be.

3. Improvement Procedure

3.1 Crossing Nodes and Hidden Paths

.
2, 6,20 fuv,LP(SP(u,vff)

(xv, 8y

Let an apparent path be one of SP (u, v ), V (u,v ) €
A, which path has at least one first passing arc (u, v ) in
KSP. Let a hidden path be composed of all arcs which are
passed and covered entirely with some other apparent path
in KSP. Let an exposed path be a new appeared hidden path
by breaking one of arcs of apparent path.

Then all initial K shortest paths appeared in KSP are the
apparent paths. All hidden paths are not appeared in T'(s,
t) whether the length of some hidden paths are shorter than
the length of some apparent paths in KSP. Generally hidden
paths are longer than apparent paths. The hidden path is not
appeared in KSP, because all arcs of hidden path are already

[3,30] [12,18] p! —»
(12,33

[Figure 2] KSP, for K = 5 shortest paths problem in the
network of [Figure 1]

passed and covered by the other apparent paths.

To obtain the optimal solution, we need to develop an
algorithm to search and expose the hidden paths shorter
than some paths of the KSP, and to replace some apparent
paths by these exposed hidden paths until there are not any
shorter hidden path in the KSP.

The algorithm in this article pre;ents to expose some
hldden paths that are shorter than P %, and to replace some
of P',Vi €K, in KSP by the exposed shortest paths.

Let an intersection node i, IN; be a node that has at least
two inward arcs and at least one outward arc, excluding node
s, node t and f; which has one outward arc. Let a crossing
node i, CN; be an intersection node which at least two inward
arcs are appeared by turns and which is appeared at least
three times in the KSP ;. Let IN be a set of intersection
nodes, and CN be a set of crossing nodes.

In initial solution KSP; or feasible solution KSP 4, if there
are three or more apparent paths, HP(g,i,j), HP(g,1,k), and
HP(hij) , then this node i is a crossing node (see [Figure
3]), and there could be a hidden path shorter than P, which
is HP(h,i,k). Because arc (h, i) was passed by HP(h,1,j),
and arc (i, k ) was passed by HP(g,1,k), so path HP(h,i,k)
is hidden and disappeared by the two apparent shorter path.

Theorem 1 : If node i is CNiand has two imward arcs
and two outward arcs, a path, SP(IA(1,2),0A(i,2))
is appeared fourthly at earliest and hidden by
second or third path.

Proof : The shortest path which passes CNj is
SP(IA(i,1),0A(i,1)), and second or third path is
SP(IA(i,1),0A(1,2)) or SP(IA(i,2),0A(i,1)).
SP(IA(i,2),0A(i,2)) is disappered and hidden by
second or third path, because FP(s,IA(i,2)) is
passed by SP(IA(i,2),0A(i,1)), and
FP(OA(1,2),t) by SP(IA(1,1),0A(i,2)).

Therefore, SP(IA(i,2),0A(1,2)) is appeared
fourthly at earliest and hidden by second or third
path.

And the crossings may be produced not only on
intersection nodes, but also on intersection arcs and on
intersection subpaths which have two or more inward arcs,
like arc (g, i ) and arc (h, i ) in the [Figure 4].

When a crossing occurs at IN; in the KSP; in the [Figure
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3] or the [Figure 41, IN; should be appeared at least 3 times
in the KSP; .

But even though this INi is appeared only two times in
the KSPl , or the INi is appeared three or more times and
only same inward arc is appeared continuously, the crossing
does not occur.

A crossing at IN; occurs necessarily in the case that IA
(i, 1) is appeared two or more and IA (i, 2 ) is appeared
at least once in the KSP .

We can find out the candidate list of crossing nodes in
the method of check the number of nodes

OAG,D)

[Figure 31 Intersection Node

0AG,2)

(a) Cross arc

@ IAG,D
O—@>--

1AG,2)

hd

OA(,2)

(b) Cross subpath
[Figure 4] Cross arc and Cross subpath

which are appeared three and more times in the KSP,

within at most complejxity 9 (Kn )k

KSP; comprises {P 7, P9, P 7} which is the set of
K apparent shortest paths that pass from s to ¢ through each
specified arc, but may not be the set of an optimal K shortest
E)aths. There may be hidden paths that are shorter than P
.. When a crossing occurs at IN; a hidden path EP; is
disappeared by second and next paths which pass through
an intersection node. EP; which may pass the second or
next inward arc and the second or next outward arc of the
intersection node is not appeared in [Figure 3], because at
least three or more paths passed all arcs of EP; in advance.

Thelreforea if we ﬁpd out a crossing node from the KSP;
={P, P73, P%}, we search and expose the hidden
paths shorter than P 7 centering around the crossing node,
and replace P 7 and some shorter paths in the KSP; by the
exposed hidden paths till there is not any crossing node or
not any exposed path shorter than P 7 in the KSP; . But
it is not easy to find out crossing nodes efficiently and to
expose hidden shorter paths.

When three shortest paths pass through a node i, and
IA (i, 1 ) are appeared at least twice and IA (i, 2 ) are
appeared once in KSP, then this node i is a crossing node,
CN; , and a hidden path that is the next path to pass this
CNi is covered and hidden by the former three paths. Because
the hidden path passes through IA (i, 2 ) and OA (i, 2 ),
we need to break temporarily the path to pass through IA
(i, 1 ) of CN; in order to expose this hidden path.

Therefore, we can make it a rule to break temporarily this
IA (i, 1) of CN; in order to expose a hidden path EP; which
passes from node s through IA (i, 2 ) and OA (i, 2 ) or
a second subpath from CN; to node ¢

OAG,3)

[Figure 5] CN; with multiple inward arc

In case that the crossing node have many inward arcs
[Figure 5], we can expose hidden shortest paths with
breaking some inward arcs one by one from the first inward
arc of the crossing node. In the [Figure 5], with breaking IA
(i, 1), thatis, arc (g, i ), we can expose hidden paths HP

Crossing node

Appeared path

FP!:s-g-i-j-t
FP?: s-h-i-j-t
FP?:s—f-i-j-t
FP*':s-g-i-k-t
FP*:s-g-i-j-t

[l
'
1
'
]
i

Exposed hidden path

NP':s-h-i-k-t
NP?:s-f-i-k-t
NP?:s-h-i-I-t
NP s-f-i-1-¢

[Figure 6] Appeared paths and Exposed hidden paths
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(h,i,k) and HP (h, i, 1), with adding to break IA (i, 2), that
is, arc (h, i ), we can expose hidden paths HP (f, i, k ) and
HP (f, i, 1 ), and with adding more to break IA (i, 3 ), that
is, arc (f, i ), we can expose hidden paths HP (e, i, k ) and
HP (e, 1, 1).

Therefore, if a node is appeared at least three times and
two inward arcs of the node are appeared by turns, then there
may be a hidden shortest path in the KSP;, and with
breaking the first inward arc, a hidden shortest path can be
exposed. If Ehis exposed hidden path, EP,, is shorter tpan
the path P %, this EP; is entered and the present P * is
left out, and an improved KSP.; is prodyced in gscending
order of the path length with (P 4, P9, P~} EPJ.

We can expose the hidden paths which pass CN; in the
way of connecting the subpath passing from s through the
second inward arc and the next inward arcs to CN;, FP (s,
IA (ia )), where a = 2, with the subpath passing from CN;
through the second outward arc and next outward arcs to
node t, FP (OA (ib ), t ), where b = 2. In case that CN;
has three or more inward arcs and outward arcs in the KSP;
[Figure 6], we can connect FP (s, IA (ia ), where a =
2, thatis, s~ f— ¢, and s~ h— i, with FP(OA(ib), t ),
where b =2, that is, i—k ~¢ and i— ! ~ ¢ to expose
HP (h ,i,k), HP (h ,i,l), HP (f ,i k), and HP (f ,i,1).

LP(EP; ), the length of the new exposed path EP;, HP
(h,i,l), that is, s~ h— i— [~ t can be easily calculated
from the information about 7, and &, in T (s, t ).

LP (EP; ),= 7n tcritcit + &y (2.1)

)

Lemma 1. If an intersection node becomes definite to be
the first crossing node on the r - th path in the
KSP;, then {P*, P%* - P} =
{P\,P},~,P}), and r 23
Proof In a KSP; , when at least three shortest paths inter-
sect centering around a crossing node, there
be hidden shortest paths that are shorter than %y
But there is not any hidden path until the first
crossing node is appeared three times. If the first
crossing node is checked on the r-th path in the KSP;
, the crossing node is appeared three times by the
r—th path. The hidden shortest paths to pass through
the crossing node in the fourth is appeared after the
r-th path. Therefore r = 3, and there is not any
hidden path from the first path to the r-th path The
hidden shortest path should be longer than
the r-th path
Therefore { P*, P**, - ,P""}={ P}, P}, - P}

Lemma 2. In a KSP,, if there is no crossing node, then the
KSP, is the optimal solution.
Proof. If there is not any crossing node in the KSP;, then
r =2 K and by Lemma 1, the KSP; is the optimal
solution.

f the first crossing node is detected on the k - th path,
P}, there is no hidden path in the KSP, , because the first
hidden path can be existed in the next of the k - th path
at the earliest. Therefore the KSP; is the optimal solution.

Lermma 3. In the K = 3 shortest path problem, KSP -; is the
optimal solution.
Proof. It becomes clear that a first crossing node is
appeared at the earliest on the 3rd path in the KSP,
-1 It follows from Lemma 1 that r =2 K =3, then
{p'",p?*, P3*} = { P}, P% P3). Therefore if K
=3, KSPy; is the optimal solution

3.2 Dual Approach

The method to find crossing nodes and to break inward
arc is useful for a small-size K shortest paths problem, but
for big-size K shortest paths problem, this method may not
guarantee to solve in a reasonable time, because it may be
difficult to find out crossing nodes and to expose hidden
shortest paths in the KSP;.

1

In order to check some crossing nodes and to expose
hidden shortest paths systematically, we can couple a dual
approach to this improvement procedure.

Let z; be the label value on node i of the shortest path
tree SPT(N1,Ar), which is T'(s) rooted at node s by
Dijkstra method.

Then 7s=0

ri=min{z;+c;), Vi€ N\s.

Let II={rmi, 72, 7o)

Then I is a dual vector and satisfies the complimentary
slackness condition (C. S. C) related to SPT, and its dual are
rewritten like below ;

i< mite;, VU, j)EA -~ (Dual Feasibility)
Ti=xi +cy,V{,j ) E A oo (C.S. Conditions)

Therefore, (i,j) € Ar = z; < zi+cy
Generally, ¢;j, a reduced cost relative to SPT, is

cij =xitcij~x;>0, on (i, )& Ar
c on SPT (Nr, Ar)

Let a detouring incremental cost be LP(SP(i, j)) -
LP(SP(, j)), G, j)€Ar (i°,j )€ Ar Because SP(7, j)
is the shortest path passing through IA4 (i, I ) and SP(i,j)
is the path passing through IA(ia), where a = 2. The
length of a shortest path SP (i", ), which passes through arc
(i"j), (i",j)E Ar, is ¢;; shorter than the length of a
path SP (i, j) which passes an inward arc (i,j) €Ar .

If ¢ij=0, then the arc (i, j ) is an arc of SPT, and is
an arc of a path of KSP; .

cij =0,

Theorem?2. If ¢:;> 0, then ci; isadetouring incremental
cost
Proof If ¢i;> 0, then the arc (i, j ) is not any arc of SPT,
LP(SP(Z',*J'))= Zitcijtd;
LP(SP(i’, j))= xj+ 4

And then, LP(SP(i,j))-LP(SP(i, j))

=(ritcijtdi)—(x;+ 8 )
= cCijt i 7

= Cij

ci j is a detouring incremental

Therefore,
COSL.

Let LP (HP (i, j, m )) be the length of a hidden shortest
path which detours through an inward arc (i, j ) and an
outward arc (j, m ), OA(,b), b=2, of a crossing node J.

And then, LP (SP (j, m ))=LP (SP (r, j, m ), (r, j)
€ Ar, SP (r, j, m ) is a second or a next path which
passes through arc (r, j ) in the KSP; .

Lemma 4 LP (HP (ij, m))

=LP (SP (j, m )+ ¢c;j, Vj€ Nr.
Proof LP(HP (i, j, m))= zi*+cCij*+Cjim* m
=zi+( cij+ i~ i )+Cj mt Om
=(Zj*Cim* Om)+ Cij

= LP(SP(G, m))+ ¢cij, YGm) *0A(, 1) (2.2)

Therefore, LP (HP (i, j, m ) which passes through second
or next inward arc (i, j ) and second or next outward arc
(j, m ) of CN; can be calculated by equation (2,2) in case

that ¢;;> 0. That is, in order to expose hidden shortest

paths, it is needed to check the value of ¢;; of inward arc
(i, j ) toward CN;, and the value of LP (SP (j, m )) on
the all outward arc (j, m ),V (j, m )= OA (j, 1), then we
can compute the value of LP(HP(i,j, m),¥(jm) * OA(, 1)
by equation (2.2).



Lemma 5. If arc (i, j) is an arc of an exposed hidden path,
then LP (HP (i, j, m
cij*+LP (SP (j, m ))<LP(P %).
Proof Exposed hidden paths must be shorter than P kin
the KSP;.
Then LP (HP (i, j, m )
=LP (SP (j, m )+ ¢cij<LP (P %).

Therefore, if ¢;;j+ LP (SP (j, m)) >LP(P%), then HP
(i, j, m ) is not shorter than P k and it is not exposed.

Let LP (HP (i, j, m’) =min, {LP (HP (i,j, m )},¥Y(j, m
)*0AG, 1), the exposed hidden path can be produced in
a method of joining FP (s, (i, j ) and FP ((j, m" ).t ), which
is the spur of HP (r, j, m’) .

But this equation (2 2) can not easily be applied to a KSP;
which have cross arcs and cross subpaths, because the
outward arc (j, m ) is only one in KSP; and arc (j, m )

€ Ar. We can't calculate and check the hidden paths which
detour through inward arc (i, j ),Vi, and outward subpath
(G, m, n), Vn.

So, we find out all apparent paths HP (r,j, m ), V(j, m
)* OA G, 1), which pass CNj in KSP, and their length
LP (HP (r,j,m )), and then calculate the length of detouring
hidden paths LP (HP (i, j, m)) by equation (2.3), after then
choose detouring hldden paths, HP (i, J, m) which is
shorter than LP (P %), and replace P % by HP (i,j, m).

Lemma 6. In this improvement algorithm, If ¢i; > LP(P % )

-LP(P 1) V(i j) & Ar, the present KSP is the
optimal solution (KSP").

Proof In the case that ¢;; = LP (P %)~LP (P) then, LP
(HP (i,j, m ))=LP(SP(jm ))+ ¢i;>LP (P
1)+¢i; > LP (P%), for LP (SP (j, m ))>LP
(P ). Therefore, if ¢ij = LP (P)-LP (P}),

V(i, j) & Ar, the present solution, KSP; is the
optimal condition.

When we need to check inward arcs of a crossing node
to expose a hidden path , the above three lemmas are useful
to reduce the number of computational iteration.

Let arc (r, q ) be IA (q, 1) of CN,, and arc (p, q ) be
IA) (g,.Z ) of CNg, and also there are some inward arc (i,
q L

Lemma 7. ]fLP (HP (p, qm )) >LP (P 1) then LP (HP
(i,q m)) >LP (P%)Vi

Proof LP(HP (p,qm))=LP(SP{(qm))+ cp,,and LP
(HP (i, g, m ))=LP (SP (gm ))+ ¢i, Vi
Let GAP :?[q ~¢pq,Vi. Then arc (p, q) is IA
(q,2) of CN,, so LP (HP(p,q,m)) is GAP shorter
than LP (HP (i, g, m )). .
Therefore if LP (HP(P, q, m)) =LP (P} ), then LP
(HP (i, q m))>LP (P )) Vi.

Therefore, if LP (SP (p, gm )) = LP (P ), there is no
more candidate hidden path passing through CN,, which can
enter into the KSP; .

In order Jo get the optimal solution KSP *

{(p'! ;o PR

1. Make the ascending order set LIST of ( ¢;; ),Vj €N,
which are 0< ¢;;<LP (P %)-LP (P % ), in the KSP,.

2. Find out arc (p, ) whose ¢, = min ( ¢:;) >0, and arc
(r, q )€ Ar in the KSP, .

3. Find out paths HP(r,qm),Ym/(r,q) €Ar in the KSP, ,
which contains FP (1, q ).

4 ULP(HP (r,q m)+ c,,q<LP (P % ) then we expose
new shortest path HP (p, q, m ) with joining FP (1, (p,
g ) and FP ((q, m ), t). Otherwise go to 2, and select
next c,q. FP (1, (p, q )) is a forepart of the chosen
path FP (1, (p, g), t), and FP ((q, m ), ¢t ) is a spur

part of HP (r, q, m ).
5. HP(p,qm) replaces P}, and rearrange paths of KSP; in
ascending order of its length in order to get KSPp;.
6. We should repeat the above routine till LIST of c¢;;>
19 iks empty, or there is not any hidden path shorter than
I8

In case that K may be more or less larger than the number
of shortest paths which we can get, in the initial solution,
in the improvement procedure we can add some exposed
hidden paths, and get K shortest paths.

In the optimal condition, we can reach one of the following
cases in the KSP,,

Case 1; ¢pg 2 LP(P %) -LP(P ") Y(p,q).
That is, (LP (HP (r, ¢, m )+ ¢pg )2 P %
» All of the exposed paths are longer than P
Case 2, There is no crossing node till the (K-1)th path.
 Fach node is appeared at most two times or only
same imvard arcs are appeared several times.
*There is no intersection node in KSP;.
Case 3 ; LIST of ( cj) >0 is empty.
Case 4, K <3

4. Ne w K Shortest Paths Algorithm

We focus on the K shortest paths problems in a directed
network that may contain positive length arcs. Our goal is
to provide a new algorithm that globally sharp for these
problems.

This method, which we call KSP-DSA, may be described
as follows.

4.1 KSP-DSA

Step 0. Initialization.
Given a network G=(N, A ), input the
network structure and distance data.
=1, KSP;=

Step 1. Produce T'(s ) and T (t) with the Dijkstra method,
and let them be merged and make DSA, T'(s,t).
Step 2. Compute SP (u, v ) and LP(SP (u, v ),V
(u,v) €A, and select K shortest paths in ascending
order of LP (SP (u,v z) from T(s,t).
KSP,=(P 4, P% - PX
If K<3 then KSP; is the optimal solution set.
STOP.
Step 3. Calculate ( ¢;;), which is j€IN, (i, j) € KSP,.
?[j=C[j+/l'i_/fj,.
Step 4. Make LIST of inward arc (i,j ) which has cj ,
0< ¢cij<LP (P % )-LP (P % ) and arrange
("ci;j) in ascending order.
Step 5. Check the possibility for improvement.
1. IF LIST=¢, then STOP.
KSP 1 is optimal.
2. Select a next c¢;j in the LIST,
LIST=LIST - (i, j),
-1
Cpg= Cij
Step 6. Expose the hidden detouring paths and improve

present solution.

1. Pick out all paths which contain arc (r, q ), (r,
q) € Ar iP the KSP; , excepting the shortest
one and P .

— HP (r, q, m), Vm € KSP, .

2. Choose J/-th shortest path HP (r,q, m+), whose
length is (LP (HP (r, q, m* )) + cpg ) <LP (P
1 ), and JJ=JJ+1 Otherwise, go to step, 6-5.

3 Expose hidden shortest paths HP ( p, g m *) by
joining FP (1, (p, q )) and FP ({(q, m’), t ), the
spur of HE it r,oq m)

4. Replace P by HP (p, q, m’), and make and
rearrange KSP;.; in ascending order,
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and /=1+1, and go to step 6-2.
5. If JJ=1, then remove c,q, ¥p from LIST, and
arrange LIST.
Otherwise remove only ¢,, from LIST.
Then go to step 5-1,

Lemma 8 {{SP) DSA is an algorithm with complexity O
K’

Proof The major operations required by the new algorithm
is as follows. For the computational complexities i
step 1 ~ step 4, to make T (s, t ) is required O (n”)
because t hg complexity for Dijkstra algorithm is at
most O (n*), to compute SP(u, v ) and to select K
shortest path in ascendmg order is O (n ), to
compute ( cu) Y(i, j ) and to check 0< c;< LP
(P%) - LP(P% )and to arrange in ascending order
is O (n). To improve KSP; , in step 5, requires at
most O (n), and in step 6, requires O (Kn) to find
out all paths containing arc (r, q ) in present K
shortest paths and requires at most O (n) to expose
hidden paths. We need to repeat the improvement
procedure at most n times because one node among
interaction nodes should be checked if it is passed
by a hidden path Therefore the total complexity
bound is O (K né,) in this algorithm as follows ;

O )+0 (n°)+0 (n)+ (n)*éO (n)
+O0(Kn)+0(n)}=0 (K n°).

In the case of K < 3, this algorithm works within time
complexity O(n ), because the improvement procedure (step
3~6) is not required and the initial solution, KSP;, is
optimal.

5. Application

To see how the algorithm KSP-DSA works, we consider
an example network given in [Figure 1], where the T (s ),
T (t ),and T (s, t ) of the network has been shown.

We will solve the K =10 shortest path problem of the
network in the [Figure 1].

Step 0. Initialization
Input G=(N,A), I=1
IN=(3, 4, 5, 6}
Step 1. Produce T (s, t ) like in [Figure 1].
Step 2. (}))rnpute and select 10 shortest paths from 1(s,t )
1-3-4-7-8, LP(P 2;)
P} 1-4-7-8, LP(P ;) 22
Py :1-3-7-8, LP(P J)=24
Py :1-3-4-6-8, LP(P g)=30
Py 2 1-2-6-8, LP(P b;)=33
Py :1-3-5-8, LP(P ;)=34
Py 2 1-2-4-7-8, LP(P 5’):35
P 19:1~3—4—6—5—8, LP(P 4 )=36
P 0! 1 2 1-3-4-5-8, LP(P 17):38
Py 1-2-34-7-8, LP( P")=38
Step 3. Calculate ( ¢;;), j € IN, (i,j) € KSP.
Cij=Cijtmi—7j
c14=2, 665=2, 625=3, C37=4, Cz4=15.
Node 7 & IN
Step 4. List (¢ij), 0< ¢ij<LP (P % )-LP (P %), and

arrangi m ascen }ng order
LP(P )-LP(P })=38-20= 18
LIST = {(1 4), (6,5), (2,6), (2,4)}.
{Iteration 1)
step 5. Checking the improvement.
2. cu=2 LIST={(6, 5), (2 6), (2, 4)}.
JI=1 (p, q)=(1,4).
step 6. Expose a hidden detouring path.
1. (r,q) = (34), Pick out paths containing arc (3, 4).

2. Choose P 4=HP (3,4, 6 ).

Path No. LP
I in KSP, Route (P’) Remark
1 A7 Excepting
P 1-3-4-7-8 X the shortest.
1| pP% |13468 | B
2 P§ 1-3-4-6-58| 36
9 apr Excepting
Py |13458 | B the longest.
LP (P9 )+ cu=30+2=32<38
JJ=2
3. Expose HP(14, 6) by joining FP (1, (1, 4)) and
FP (4, 6),8)

HP (1,4 6)=EP:1-4-6-8, LP (EP)=32.
4. Improve present solution , KSPo

P L 1-3-4-7-8,  LP(P})=20
P%:1-4-7-8, LP(P%)=22
P%:1-3-7-8 LP(P % )=24
P%:1-3-4-68, LP(P%)=30
P%:1-4-6-8, LP(P % )=32
P%:1-2-6-8, LP(P % )=33
P 5:1-3-58, LP(P % )=31
P%:1-2-4-7-8, LP(P%)=3%
PY%:1-3-4-6-5-8, LP(P%)=3
P":1-3-4-58  LP(P")=38

Then go to step 6= 32
2. Choose ]] 2, P1=HP (3 4, 6).
LP (P75 )+ cuu=36+2=38
=LP(P %)
Go to step 6-5.
5. JJ =2, then go to step 5-1.
(Iteration 2)
step 5. Checking the improvement.
2. ¢c5=2 LIST={(2,6 ), (2,4 )}
JJ=1
(p,q)=(6, 5).
step 6. Expose a hidden detouring path.
1. (r,q)=(3,5 ), Pick out paths containing arc (3, 5).

Path No. LP
J |in gsp,| Boute | (pijy| Remark
7 o Excepting
P 1-3-5-8 A the shortest.

4. JJ =1, then remove ?ps , Vb,
and go to step 5-1.
(Iteration 3)
step 5. Checking the improvement.
2. cx=3, LIST={(2 4)}.
JJ=1
(p,g) = (26). )
step 6. Expose a hidden detouring path.
1. (r,q) =(46), Pick out paths containing arc (4,6 ).

Path No. LP
JT | gsp | Route | (pj)| Remark
4 oA Excepting
Py 13468 30 the shortest.
1| p% |1-34568| %

3. Choose P %=HP (4, 6, 5).
LP (P%)+ ¢cx=36+3=39>33
Then go to 6-4. .
4. JJ =1, thenremove ¢, Vp,and go to step 5-1.
(Iteration 4)
step 5. Checking the improvement.
2. cu=15 LIST = (B}
J=1 (p q)=02 4.
step 6. Expose a hidden detouring path.
1. (r,q) = (34), Pick out paths containing arc(34).
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2. Choose P %=SP (3, 4, 6).
LP(PY)+ cu=30+15=45>
LP(P %)

Then go to step 6-4.

Path No. LP
]j in KSP| Route (PJI) Remark
1 QA7 Excepting
Py |1-3478 2 the shortest.
1 P | 1-3-46-8 30
2 P% |1-3-4658| 36
0 g Excepting
Pl (173458 38 the Jongest.

4. JJ =1, thenremove cpa4, Vp, and go to step 5-1.
(Iteration 5)
step 5. Checking the improvement.

1. LIST =2, then KSP; is optimal. STOP.

The optimal solution KSP”*

P " 1-3-4-78, LP(P ") =20

P2 1-4-7-8, LP(P 7")=22
P 1-3-7-8, LP(P ") =24
P 1 1-3-4-6-8, LP(P 7)=30
P o7 1-4-6-8, LP(P 7")=32
P 1-2-6-8, LP(P °")=33
Pl 1-3-56, LP(P 7")=3
P o 1-2-4-7-8, LP(P 7")=35
P 1-3-4-6-58,  LP(P°")=3
P " 1-3-4-58, LP(P 7)=38

- 6. Future Research

This article presents a new algorithm for Ig Shortest Paths
Problem which has time complexity O (Kn~). Especially in
the case of K ZS 3, this algorithm works within time
complexity O (n”).

In this algorithm we can make an initial solution with K
paths among shortest paths from s to ¢ through each node,
and improve and reach an optimal solution with dual
approach which gets detouring incremental distance, c;; ,
and applies a concept of breaking inward arcs, merging sub—
path, and exposing hidden shortest paths around crossing
nodes.

In the near future, all pair of K shortest paths problem
algorithm development and nurmerical comparisons will be
the aim of our research for the application in the real fields
like as ITS (Intelligent Transport Systems), transportation
planning analysis, and transportation goods through a
distribution network in the logistics management,
telecommunications , VLSI design [9] and so on.
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