• Title/Summary/Keyword: K means clustering

Search Result 1,120, Processing Time 0.031 seconds

The Document Clustering using Multi-Objective Genetic Algorithms (다목적 유전자 알고리즘을 이용한문서 클러스터링)

  • Lee, Jung-Song;Park, Soon-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • In this paper, the multi-objective genetic algorithm is proposed for the document clustering which is important in the text mining field. The most important function in the document clustering algorithm is to group the similar documents in a corpus. So far, the k-means clustering and genetic algorithms are much in progress in this field. However, the k-means clustering depends too much on the initial centroid, the genetic algorithm has the disadvantage of coming off in the local optimal value easily according to the fitness function. In this paper, the multi-objective genetic algorithm is applied to the document clustering in order to complement these disadvantages while its accuracy is analyzed and compared to the existing algorithms. In our experimental results, the multi-objective genetic algorithm introduced in this paper shows the accuracy improvement which is superior to the k-means clustering(about 20 %) and the general genetic algorithm (about 17 %) for the document clustering.

Development of a Clustering Model for Automatic Knowledge Classification (지식 분류의 자동화를 위한 클러스터링 모형 연구)

  • 정영미;이재윤
    • Journal of the Korean Society for information Management
    • /
    • v.18 no.2
    • /
    • pp.203-230
    • /
    • 2001
  • The purpose of this study is to develop a document clustering model for automatic classification of knowledge. Two test collections of newspaper article texts and journal article abstracts are built for the clustering experiment. Various feature reduction criteria as well as term weighting methods are applied to the term sets of the test collections, and cosine and Jaccard coefficients are used as similarity measures. The performances of complete linkage and K-means clustering algorithms are compared using different feature selection methods and various term weights. It was found that complete linkage clustering outperforms K-means algorithm and feature reduction up to almost 10% of the total feature sets does not lower the performance of document clustering to any significant extent.

  • PDF

Automated K-Means Clustering and R Implementation (자동화 K-평균 군집방법 및 R 구현)

  • Kim, Sung-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.723-733
    • /
    • 2009
  • The crucial problems of K-means clustering are deciding the number of clusters and initial centroids of clusters. Hence, the steps of K-means clustering are generally consisted of two-stage clustering procedure. The first stage is to run hierarchical clusters to obtain the number of clusters and cluster centroids and second stage is to run nonhierarchical K-means clustering using the results of first stage. Here we provide automated K-means clustering procedure to be useful to obtain initial centroids of clusters which can also be useful for large data sets, and provide software program implemented using R.

Identification of Plastic Wastes by Using Fuzzy Radial Basis Function Neural Networks Classifier with Conditional Fuzzy C-Means Clustering

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1872-1879
    • /
    • 2016
  • The techniques to recycle and reuse plastics attract public attention. These public attraction and needs result in improving the recycling technique. However, the identification technique for black plastic wastes still have big problem that the spectrum extracted from near infrared radiation spectroscopy is not clear and is contaminated by noise. To overcome this problem, we apply Raman spectroscopy to extract a clear spectrum of plastic material. In addition, to improve the classification ability of fuzzy Radial Basis Function Neural Networks, we apply supervised learning based clustering method instead of unsupervised clustering method. The conditional fuzzy C-Means clustering method, which is a kind of supervised learning based clustering algorithms, is used to determine the location of radial basis functions. The conditional fuzzy C-Means clustering analyzes the data distribution over input space under the supervision of auxiliary information. The auxiliary information is defined by using k Nearest Neighbor approach.

An Efficient Clustering Method based on Multi Centroid Set using MapReduce (맵리듀스를 이용한 다중 중심점 집합 기반의 효율적인 클러스터링 방법)

  • Kang, Sungmin;Lee, Seokjoo;Min, Jun-ki
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.494-499
    • /
    • 2015
  • As the size of data increases, it becomes important to identify properties by analyzing big data. In this paper, we propose a k-Means based efficient clustering technique, called MCSKMeans (Multi centroid set k-Means), using distributed parallel processing framework MapReduce. A problem with the k-Means algorithm is that the accuracy of clustering depends on initial centroids created randomly. To alleviate this problem, the MCSK-Means algorithm reduces the dependency of initial centroids using sets consisting of k centroids. In addition, we apply the agglomerative hierarchical clustering technique for creating k centroids from centroids in m centroid sets which are the results of the clustering phase. In this paper, we implemented our MCSK-Means based on the MapReduce framework for processing big data efficiently.

K-means Clustering using a Grid-based Sampling

  • Park, Hee-Chang;Lee, Sun-Myung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.249-258
    • /
    • 2003
  • K-means clustering has been widely used in many applications, such that pattern analysis or recognition, data analysis, image processing, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using the grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

K-means Clustering using a Grid-based Representatives

  • Park, Hee-Chang;Lee, Sun-Myung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.229-238
    • /
    • 2003
  • K-means clustering has been widely used in many applications, such that pattern analysis, data analysis, market research and so on. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters, because it is more primitive and explorative. In this paper we propose a new method of k-means clustering using the grid-based representative value(arithmetic and trimmed mean) for sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

K-means clustering using a center of gravity for grid-based sample (그리드 기반 표본의 무게중심을 이용한 케이-평균군집화)

  • Lee, Sun-Myung;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • K-means clustering is an iterative algorithm in which items are moved among sets of clusters until the desired set is reached. K-means clustering has been widely used in many applications, such as market research, pattern analysis or recognition, image processing, etc. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using a center of gravity for grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

Reproducibility Assessment of K-Means Clustering and Applications (K-평균 군집화의 재현성 평가 및 응용)

  • 허명회;이용구
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.1
    • /
    • pp.135-144
    • /
    • 2004
  • We propose a reproducibility (validity) assessment procedure of K-means cluster analysis by randomly partitioning the data set into three parts, of which two subsets are used for developing clustering rules and one subset for testing consistency of clustering rules. Also, as an alternative to Rand index and corrected Rand index, we propose an entropy-based consistency measure between two clustering rules, and apply it to determination of the number of clusters in K-means clustering.

A Study on K -Means Clustering

  • Bae, Wha-Soo;Roh, Se-Won
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.497-508
    • /
    • 2005
  • This paper aims at studying on K-means Clustering focusing on initialization which affect the clustering results in K-means cluster analysis. The four different methods(the MA method, the KA method, the Max-Min method and the Space Partition method) were compared and the clustering result shows that there were some differences among these methods, especially that the MA method sometimes leads to incorrect clustering due to the inappropriate initialization depending on the types of data and the Max-Min method is shown to be more effective than other methods especially when the data size is large.