1 |
Stanford, D. C. and Raftery, A. E. (2000). Principal curve clustering with noise, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 601-609
DOI
ScienceOn
|
2 |
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function, Journal of American Statistical Association, 58, 236-244
DOI
ScienceOn
|
3 |
Wehrens, R., Buydens, L. M. C., Fraley, C. and Raftery, A. E. (2004). Model-based clustering for image segmentation and large data sets via sampling, Journal of Classification, 21, 231-253
DOI
ScienceOn
|
4 |
Hartigan, J. A. and Wong, M. A. (1979). A K-means clustering algorithm, Applied Statistics, 28, 100-108
DOI
ScienceOn
|
5 |
Kim, S. S., Kwon, S. and Cook, D. (2000). Interactive visualization of hierarchical clusters using MDS and MST, Metrika, 51, 39-51
DOI
ScienceOn
|
6 |
김성수 (1999). 통계그래픽스를 이용한 K-평균 및 계층적 군집분석, <한국분류학회지>, 3, 13-27
|
7 |
허명회, 이용구 (2004). K-평균 군집화의 재현성 평가 및 응용, <응용통계연구>, 17, 135-144
과학기술학회마을
DOI
|
8 |
Banfield, J. D. and Raftery, A. E. (1993). Model-based Gaussian and non-Gaussian clustering, Biometrics, 49, 803-821
DOI
ScienceOn
|
9 |
Brusco, M. J. and Cradit, J. D. (2001). A variable-selection heuristic for K-means clustering, Psychometrika, 66, 249-270
DOI
ScienceOn
|
10 |
Chen, J. S., Ching, R. K. H. and Lin, Y. S. (2004). An extended study of the K-means algorithm for data clustering and its applications, The Journal of the Operational Research Society, 55, 976-987
DOI
ScienceOn
|
11 |
Dasgupta, A. and Raftery, A. E. (1998). Detecting features in spatial point processes with clutter via modelbased clustering, Journal of the American Statistical Association, 93, 294-302
DOI
ScienceOn
|
12 |
Everitt, B. S., Landau, S. and Leese, M. (2001). Cluster Analysis, Arnold, London
|
13 |
Fraley, C. (1998). Algorithms for model-based gaussian hierarchical clustering, SIAM Journal on Scientific Computing, 20, 270-281
DOI
ScienceOn
|
14 |
Fraley, C. and Raftery, A. E. (1998). How many clusters? Which clustering methods? Answers via modelbased cluster analysis, The Computer Journal, 41, 578-588
DOI
ScienceOn
|
15 |
Fraley, C. and Raftery, A. E. (2006). MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based Clustering, Technical Report No. 504, Department of Statistics University of Washington
|
16 |
Mojena, R., Wishart, D. and Andrews, G. B. (1980). Stopping rules for Wards'clustering method, COMPSTAT, 426-432
|
17 |
Krzanowski, W. J. (1988). Principles of Multivariate Analysis, Oxford Science, Oxford
|
18 |
Milligan, G. and Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set, Psychometrika, 50, 159-179
DOI
|
19 |
Mojena, R. (1977). Hierarchical grouping methods and stopping rules: An evaluation, The Computer Journal, 20, 359-363
DOI
|
20 |
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods, Journal of American Statistical Association, 66, 846-850
DOI
ScienceOn
|
21 |
SPSS (2000). Clementine Application Templates for Telecommunication Industries(Telco CAT), Chicago, SPSS Inc.
|