• Title/Summary/Keyword: Junction properties

Search Result 370, Processing Time 0.038 seconds

Properties of p-n junction threshold voltage of Silicon diode by transport current in cryogenic temperature (인입 전류에 따른 실리콘(Silicon) 다이오드의 극저온 p-n 접합의 문턱 전압 특성)

  • Lee, An-Su;Lee, Seung-Je;Lee, Eung-Ro;Ko, Tea-Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.864-867
    • /
    • 2003
  • Since the development of semiconductors, various related research has been conducted. During research, silicon diodes have been commonly used because of their simplicity and low cost in the manufacturing process. This research deals with p-n junction threshold voltages from silicon diodes due to transport current at a cryogenic temperature. At a cryogenic temperature(77K) we could get minimum current which junction threshold voltage becomes constant. This is experimented on GPIB communication and it consist of programmable current source, multimeter which gauge the threshold voltage in a very low temperature caused by transport current from 5nA to 1mA and $LN_2$(77K) for coolant. This experiment is programmed all process using Measurement studio(Lab window) tool.

  • PDF

The Electrical Characterization of Magnetic Tunneling Junction Cells Using Conductive Atomic Force Microscopy with an External Magnetic Field Generator

  • Heo, Jin-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.6
    • /
    • pp.271-274
    • /
    • 2010
  • We examined the tunneling current behaviors of magnetic tunneling junction (MTJ) cells utilizing conductive atomic force microscopy (AFM) interfaced with an external magnetic field generator. By introducing current through coils, a magnetic field was generated and then controlled by a current feedback circuit. This enabled the characterization of the tunneling current under various magnetic fields. The current-voltage (I-V) property was measured using a contact mode AFM with a metal coated conducting cantilever at a specific magnetic field intensity. The obtained magnetoresistance (MR) ratios of the MTJ cells were about 21% with no variation seen from the different sized MTJ cells; the value of resistance $\times$ area (RA) were 8.5 K-12.5 K $({\Omega}{\mu}m^2)$. Since scanning probe microscopy (SPM) performs an I-V behavior analysis of ultra small size without an extra electrode, we believe that this novel characterization method utilizing an SPM will give a great benefit in characterizing MTJ cells. This novel method gives us the possibility to measure the electrical properties of ultra small MTJ cells, namely below $0.1\;{\mu}m\;{\times}\;0.1\;{\mu}m$.

Optimization of μc-SiGe:H Layer for a Bottom Cell Application

  • Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.322.1-322.1
    • /
    • 2014
  • Many research groups have studied tandem or multi-junction cells to overcome this low efficiency and degradation. In multi-junction cells, band-gap engineering of each absorb layer is needed to absorb the light at various wavelengths efficiently. Various absorption layers can be formed using multi-junctions, such as hydrogenated amorphous silicon carbide (a-SiC:H), amorphous silicon germanium (a-SiGe:H) and microcrystalline silicon (${\mu}c$-Si:H), etc. Among them, ${\mu}c$-Si:H is the bottom absorber material because it has a low band-gap and does not exhibit light-induced degradation like amorphous silicon. Nevertheless, ${\mu}c$-Si:H requires a much thicker material (>2 mm) to absorb sufficient light due to its smaller light absorption coefficient, highlighting the need for a high growth rate for productivity. ${\mu}c$-SiGe:H has a much higher absorption coefficient than ${\mu}c$-Si:H at the low energy wavelength, meaning that the thickness of the absorption layer can be decreased to less than half that of ${\mu}c$-Si:H. ${\mu}c$-SiGe:H films were prepared using 40 MHz very high frequency PECVD method at 1 Torr. SiH4 and GeH4 were used as a reactive gas and H2 was used as a dilution gas. In this study, the ${\mu}c$-SiGe:H layer for triple solar cells applications was performed to optimize the film properties.

  • PDF

Gelation Behavior of Acrylonitrile Copolymer/Dimethylformamide Solution and Mechanical Properties of Films Obtained from It′s Solution (아크릴로니트릴공중합체-디메틸포름아마이드 용액의 겔화 거동 및 겔필름의 물성)

  • 오영세;한삼숙;송기원
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.787-793
    • /
    • 2000
  • The acrylonitrile copolymer/dimethylformamide (DMF) solutions were prepared to investigate the gelation behavior and critical gel concentration (c*). Gelation is rapidly progressed with the increase of molecular weight of copolymer, but significantly delayed with supercooling temperature and comonomer contents. The c* behavior showed contrary trend against gelation behavior. In dynamic viscoelastic test, two glass-transition region were observed in film obtained from gelled solution whereas one glass-transition in film obtained from true solution. This result supports the idea that an ordered junction zone is formed by the dipole-dipole interaction of intermolecularly neighboring stereo-regular parts of atactic acrylonitrile copolymer chains due to a nucleation process in the solution.

  • PDF

Fabrication and Properties of Silicon Solar Cells using Al2O3/Si/Al2O3 Structures (Al2O3/Si/Al2O3구조를 이용한 실리콘태양전지 제작 및 특성)

  • Kim, Kwang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.45-49
    • /
    • 2015
  • Using a combined CVD and ALD equipment system, multi-layer quantum well structures of $Al_2O_3/a-Si/Al_2O_3$ were fabricated on silicon Schottky junction devices and implemented to quantum well solar cells, in which the 1~1.5 nm thicknesses of the aluminum oxide films and the a-Si thin film layers were deposited at $300^{\circ}C$ and $450^{\circ}C$, respectively. Fabricated solar cell was operated by tunneling phenomena through the inserted quantum well structure being generated electrons on the silicon surface. Efficiency of the fabricated solar cell inserted with multi-quantum well of 41 layers has been increased by about 10 times that of the solar cell of pure Schottky junction solar cell.

Properties of Recessed Polysilicon/Silicon($n^{+}$) - Silicon(P) Junction with Process Condition (공정조건에 따른 함몰된 다결정실리콘/실리콘($n^{+}$) - 실리콘(p) 접합의 특성)

  • 이종호;최우성;박춘배;이종덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.152-153
    • /
    • 1994
  • A recessed $n^{+}$-p junction diode with the serf-aligned structure is proposed and fabricated by using the polysilicon as an $n^{+}$ diffusion source. The diode structure can be applicable to the emitter-base formation of high performance bipolar device and the $n^{+}$ polysilicon emitter has an important effect on the device characteristics. The considered parameters for the polysilicon formation are the deposition condition $As^{+}$ dose for the doping of the polysilicon, and the annealing using RTP system. The vertical depth profiles of the fabricated diode are obtained by SIMS. The eleotrical characteristics are analyzed in trims of the ideality factor of diode (n), contact resistance arid reverse leakage current. The $As_{+}$ dose for the formation of good junction is current. The $As^{+}$ dose for the formation of goodjunctions is about 1∼2${\times}$$10^{16}$$cm^{-2}$ at given RTA condition ($1100^{\circ}C$, 10 sec). The $n^{+}$-p structure is successfully applied to the self-aligned bipolar device adopting a single polysilicon technology.

  • PDF

The Study of the Tunnel Recombination Junction Properties in Multi-Junction Thin Film Silicon Solar Cells (다중 적층형 박막 실리콘 태양 전지의 터널 접합 특성 연구)

  • Hwang, Sun-Tae;Shim, Jenny H.;Chung, Jin-Won;Ahn, Seh-Won;Lee, Heon-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.62.2-62.2
    • /
    • 2010
  • 박막 실리콘 태양 전지는 저가격화 및 대량생산, 대면적화에 유리하다는 장점을 가지고 있다. 단점으로 지적되는 낮은 효율을 극복하기 위해 광흡수층의 밴드갭이 서로 다른 두 개 이상의 박막을 적층하여, 넓은 파장 대역의 빛을 효과적으로 흡수함으로써 광변환 효율을 올리기 위한 많은 연구가 이루어지고 있다. 서로 다른 밴드갭의 광흡수층을 가진 p-i-n 구조를 다중 적층하여 고효율의 태양 전지를 제작하기 위해서는 n-도핑층과, p-도핑층 간에 전자와 정공이 빠르게 재결합할 수 있는 터널 접합(Tunnel Recombination Junction)의 형성이 필수적이며, 이때 광손실이 최소화되도록 해야한다. 만약 터널 접합이 적절하게 형성되지 않으면 결합되지 않은 전자와 정공이 도핑층 사이에 쌓이게 되고, 도핑층 사이의 저항 증가로 태양 전지의 광변환 효율은 크게 하락한다. 이번 연구에서는 터널 접합이 잘 이루어지게 하기 위한 n-도핑층 및 p-도핑층 박막의 특성과, 터널 접합의 특성에 따른 적층형 태양 전지의 광효율 변화를 확인하였다. 광흡수층 및 도핑층은 TCO($SnO_2:F$, Asahi) 유리 기판 위에 PECVD를 사용하여 p-i-n 구조로 RF Power 조건에서 증착되었고, ${\mu}c$-Si 광흡수층의 경우에는 VHF Power 조건에서 증착되었다. 광흡수층이 a-Si/${\mu}c$-Si의 구조를 가지는 이중 접합 태양 전지에서 ${\mu}c$-Si n-도핑층/${\mu}c$-Si p-도핑층 사이의 터널 접합 실험 결과 n-도핑층 및 p-도핑층의 결정화도와 도핑 농도를 조절하여 터널 접합의 저항을 최소화했고, 터널 접합 특성이 이중 접합 셀의 광효율 특성과 유사한 경향을 보임을 확인하였다. 광흡수층이 a-Si/a-SiGe/${\mu}c$-Si의 구조를 가지는 삼중 접합 태양 전지 실험의 경우 a-Si과 a-SiGe 광흡수층 사이에 ${\mu}c$-Si n-도핑층/${\mu}c$-Si p-도핑층/a-SiC p-도핑층의 구조를 적용하여 터널 접합을 형성하였으며, ${\mu}c$-Si p-도핑층의 두께 및 박막 특성을 개선하여 광손실이 최소화된 터널 접합을 구현하였고, 삼중 접합 태양 전지에 적용되었다.

  • PDF

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

The Study on the Improvement of Mechanical Performance due to Change in Temperature and Sputtering by $SiO_2/Ag$ Material of Bonded Dissimilar Materials with Cylindrical Shape (원통형 이종 접합 소재의 $SiO_2/Ag$스퍼터 증착과 온도 변화에 따른 기계적 특성에 관한 연구)

  • Lee, Seung-Hyun;Choi, Seong-Dae;Lee, Jung-Hyong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.138-145
    • /
    • 2012
  • The material used in this study is dielectric and ferrite. Because of the unique characteristics of the material, it is easily exposed to external shocks and pressure, which cause damage to the product. However, after being processed under high-temperature environment repeatedly, the mechanical strength of the product is greatly increased due to the change of the electrical properties. In this paper, dielectric and bonded ferrite material was tested for the material properties. The equipment for this experiment was produced and tested to allow Cylindrical and Three-dimensional geometry of the product for the vacuum deposition. For Cylindrical shape of the product, in order to obtain the equivalent film thickness, the device is constructed in a vacuum chamber which gives arbitrary revolving and rotating capability. The electrical performance of the product is obtained through this process as well. However, as mentioned above, with repeating processes under high temperature and exposure to external environment, the product is easy to be broken. This experiment has enabled us to find out a stable condition to apply the communication of the RF high frequency to each of the core elements, such as Ferrite and Dielectric which is then used for the mechanical strength of the Raw material, hetero-junction material, Hetero-junction Ag Coating material and hetero-junction Ag Coating SiO2 Coating material respectively.