• 제목/요약/키워드: Jumping robot

검색결과 19건 처리시간 0.027초

작은 스케일의 생체 모방 수상 점프 로봇 (a biologically inspired small-scale water jumping robot)

  • 신봉수;김호영;조규진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1427-1432
    • /
    • 2008
  • This paper describes the locomotion of a water jumping robot which attempts to emulate the fishing spider’s ability to jump on the water surface. While previous studies of the robots mimicking arthropods living on water were focused on recreating their horizontal skating motions, here we aim to achieve a vertical jumping motion. The robot jumps by pushing the water surface with rapidly released legs which were initially bent. The motion is triggered with a latch driven by the shape memory alloy actuator. The robot is capable of jumping to the maximum height of 26mm. Jumping efficiency, defined the maximum jumping height on water over the maximum jumping height on rigid ground, is 0.26 This work represents a first step toward robots that can locomote on water with superior versatility including skating and jumping.

  • PDF

가변길이 엔드팁을 갖는 원추형 스프링을 이용한 도약로봇의 이동성 향상 (Mobility Improvement of a Jumping Robot using Conical Spring with Variable Length Endtip)

  • 김기석;김병상;송재복;임충혁
    • 제어로봇시스템학회논문지
    • /
    • 제15권11호
    • /
    • pp.1108-1114
    • /
    • 2009
  • Mobility is one of the most important features for a guard robot since it should be operated in rough places. A wheel-based mobile robot capable of jumping is an appropriate structure for a guard robot because it can easily satisfy the requirements for small guard robots. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes a small robot equipped with the jumping mechanism based on the conical spring with the variable length endtip. The variable length endtip enables the independent control of the jump force and jump angle which are related to the jump height and jump distance, respectively. Various experiments demonstrated that the proposed jumping mechanism can provide the independent control of jump force and jump angle, and improve the mobility of a small robot to overcome an obstacle. Furthermore, a combination of the jumping mechanism and the PSD sensor to measure the distance to the step enable the jumping robot to autonomously climb stairs.

소형로봇을 위한 원추형 스프링 기반의 도약 메커니즘의 개발 (Development of Conical Spring-based Jumping Mechanism for a Portable Robot)

  • 김병상;이장운;김현중;;송재복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1195-1200
    • /
    • 2007
  • It is desirable that the guard robot should be small-sized and light-weighted to increase its portability. In addition, it should be able to overcome a relatively high obstacle to cope with different situations. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes the jumping mechanism based on the conical spring for a small robot. Both the clutch mechanism and conical spring are incorporated into the jumping mechanism. In the clutch mechanism, the spring can be immediately compressed and released by one actuator with the planetary gear train and one-way clutch. The robot equipped with the jumping mechanism can overcome the obstacles which are higher than its height. In this paper, the characteristic of the conical spring for the jumping robot is determined and the small-sized, lightweight jumping mechanism is developed. The validity of the jumping mechanism was verified by various experiments. It is shown that the robot using this mechanism can provide good mobility in the rough terrain.

  • PDF

생체모방 소형 점핑로봇의 설계 및 시뮬레이션 (Design and Simulation of Small Bio-Inspired Jumping Robot)

  • 호탐탄;최성학;이상윤
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1145-1151
    • /
    • 2010
  • 본 논문은 형상기억합금 와이어에 의해 구동되는 점핑로봇에 대한 연구로서 기구의 설계와 컴퓨터 시뮬레이션을 포함하고 있다. 인간과 같은 척추동물 하지 근골격계의 구조와 기능을 모방한 구조의 점핑 기구를 설계하였다. 점핑 기구의 각 다리는 대퇴부, 정강이, 발의 세 부분으로 구성되고, 점핑에 필수적인 단일관절근육인 대둔근, 양관절근육인 대퇴직근과 비복근을 포함하는 구조이다. 각 근육을 형상기억합금 와이어로 대체한 컴퓨터 모델로 시뮬레이션한 결과, 로봇의 최대 점핑 높이가 로봇 신장의 약 4 배임을 확인하였다. 또한 구조가 보다 단순화된 로봇 모델과 점핑 성능을 비교하였고, 그 결과 근골격계를 모방한 모델이 점핑 높이 면에서 3.3 배 우수한 것으로 나타났다. 이러한 컴퓨터 시뮬레이션을 통하여 형상기억합금이 소형 점핑로봇의 작동기로 사용하기에 적합함을 확인하였다.

소형 정찰 로봇의 도약 메커니즘 개발 (Development of Jumping Mechanism for Small Reconnaissance Robot)

  • 태원석;김수현;곽윤근
    • 한국군사과학기술학회지
    • /
    • 제12권5호
    • /
    • pp.563-570
    • /
    • 2009
  • In the future, most military activities will be replaced by robots. Because of many dangerous factors in battlefield, reconnaissance should be performed by robot. Reconnaissance robot should be small for not being detected, be light and simple structure for personal portability and overcome unexpected rough terrain for mission completion. In case of small and light robot, it can't get enough friction force for movement. Therefore small reconnaissance robot need jumping function for movement. In this paper we proposed a biologically inspired jumping mechanism. And we adjusted moment and jumping angle by using four bar linkage, especially varying coupler length.

점핑로봇 개발을 위한 생체모방적 설계 방법의 리뷰 (Review of Biomimetic Designs for the Development of Jumping Robots)

  • 호탐탄;승현수;이상윤
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.201-207
    • /
    • 2012
  • Jumping is considered as a suitable way for realizing fast locomotion on the ground. As for the issue of developing mobile robots that can jump up and forward enough for accomplishing useful missions, this paper first introduces two types of jumping principles that are found in biological animals or insects. We also present how the principles are applied to several jumping robot examples that include outcomes for the past a few years and also our recent one. Design ideas and features of the robots are explained and compared in order to discuss important issues and guidelines for the design of jumping robots.

탄성체의 에너지 변환을 이용한 점프 로봇의 기구변수 최적화 (Kinematic Parameter Optimization of Jumping Robot Using Energy Conversion of Elastic Body)

  • 최재능;이상호;정경민;서태원
    • 제어로봇시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.53-58
    • /
    • 2016
  • Various jumping robot platforms have been developed to carry out missions such as rescues, explorations, or inspections of dangerous environments. We suggested a jumping robot platform using energy conversion of the elastic body like the bar of a pole vault, which is the main part in which elastic force occurs. The compliant link was optimized by an optimization method based on Taguchi methodology, and the robot's leaping ability was improved. Among the parameters, the length, width, and thickness of the link were selected as design variables first while the others were fixed. The level of the design variables was settled, and an orthogonal array about its combination was made. In the experiment, dynamic simulations were conducted using the DAFUL program, and response table and sensitivity analyses were performed. We found optimized values through a level average analysis and sensitivity analysis. As a result, the maximum leaping height of the optimized robot increased by more than 6.2% compared to the initial one, and these data will be used to design a new robot.