• Title/Summary/Keyword: Jumping Robot

Search Result 19, Processing Time 0.025 seconds

a biologically inspired small-scale water jumping robot (작은 스케일의 생체 모방 수상 점프 로봇)

  • Shin, Bong-Su;Kim, Ho-Young;Cho, Kyu-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1427-1432
    • /
    • 2008
  • This paper describes the locomotion of a water jumping robot which attempts to emulate the fishing spider’s ability to jump on the water surface. While previous studies of the robots mimicking arthropods living on water were focused on recreating their horizontal skating motions, here we aim to achieve a vertical jumping motion. The robot jumps by pushing the water surface with rapidly released legs which were initially bent. The motion is triggered with a latch driven by the shape memory alloy actuator. The robot is capable of jumping to the maximum height of 26mm. Jumping efficiency, defined the maximum jumping height on water over the maximum jumping height on rigid ground, is 0.26 This work represents a first step toward robots that can locomote on water with superior versatility including skating and jumping.

  • PDF

Mobility Improvement of a Jumping Robot using Conical Spring with Variable Length Endtip (가변길이 엔드팁을 갖는 원추형 스프링을 이용한 도약로봇의 이동성 향상)

  • Kim, Ki-Seok;Kim, Byeong-Sang;Song, Jae-Bok;Yim, Chung-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1108-1114
    • /
    • 2009
  • Mobility is one of the most important features for a guard robot since it should be operated in rough places. A wheel-based mobile robot capable of jumping is an appropriate structure for a guard robot because it can easily satisfy the requirements for small guard robots. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes a small robot equipped with the jumping mechanism based on the conical spring with the variable length endtip. The variable length endtip enables the independent control of the jump force and jump angle which are related to the jump height and jump distance, respectively. Various experiments demonstrated that the proposed jumping mechanism can provide the independent control of jump force and jump angle, and improve the mobility of a small robot to overcome an obstacle. Furthermore, a combination of the jumping mechanism and the PSD sensor to measure the distance to the step enable the jumping robot to autonomously climb stairs.

Development of Conical Spring-based Jumping Mechanism for a Portable Robot (소형로봇을 위한 원추형 스프링 기반의 도약 메커니즘의 개발)

  • Kim, Byeong-Sang;Lee, Jang-Woon;Kim, Hyun-Jung;Vu, Quy-Hung;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1195-1200
    • /
    • 2007
  • It is desirable that the guard robot should be small-sized and light-weighted to increase its portability. In addition, it should be able to overcome a relatively high obstacle to cope with different situations. The jumping robot can reach a higher place more rapidly than other locomotion methods. This research proposes the jumping mechanism based on the conical spring for a small robot. Both the clutch mechanism and conical spring are incorporated into the jumping mechanism. In the clutch mechanism, the spring can be immediately compressed and released by one actuator with the planetary gear train and one-way clutch. The robot equipped with the jumping mechanism can overcome the obstacles which are higher than its height. In this paper, the characteristic of the conical spring for the jumping robot is determined and the small-sized, lightweight jumping mechanism is developed. The validity of the jumping mechanism was verified by various experiments. It is shown that the robot using this mechanism can provide good mobility in the rough terrain.

  • PDF

Design and Simulation of Small Bio-Inspired Jumping Robot (생체모방 소형 점핑로봇의 설계 및 시뮬레이션)

  • Ho, Thanhtam;Choi, Sung-Hac;Lee, Sang-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1145-1151
    • /
    • 2010
  • In this paper, we discuss the design and simulation of a jumping-robot mechanism that is actuated by SMA (shape memory alloy) wires. We propose a jumping-robot mechanism; the structure of the robot is inspired by the musculoskeletal system of vertebrates, including humans. Each robot leg consists of three parts (a thigh, shank, and foot) and three kinds of muscles (gluteus maximus, rectus femoris, and gastrocnemius). The jumping capability of the robot model was tested by means of computer simulations, and it was found that the robot can jump to about four times its own height. This robot model was also compared with another model with a simpler structure, and the performance of the former, which was based on the biomimetic design, was 3.3 times better than that of the latter in terms of the jumping height. The simulation results also verified that SMA wires can be suitable actuators for small jumping robots.

Development of Jumping Mechanism for Small Reconnaissance Robot (소형 정찰 로봇의 도약 메커니즘 개발)

  • Tae, Won-Seok;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.563-570
    • /
    • 2009
  • In the future, most military activities will be replaced by robots. Because of many dangerous factors in battlefield, reconnaissance should be performed by robot. Reconnaissance robot should be small for not being detected, be light and simple structure for personal portability and overcome unexpected rough terrain for mission completion. In case of small and light robot, it can't get enough friction force for movement. Therefore small reconnaissance robot need jumping function for movement. In this paper we proposed a biologically inspired jumping mechanism. And we adjusted moment and jumping angle by using four bar linkage, especially varying coupler length.

Review of Biomimetic Designs for the Development of Jumping Robots (점핑로봇 개발을 위한 생체모방적 설계 방법의 리뷰)

  • Ho, Thanhtam;Seung, Hyun-Soo;Lee, Sang-Yoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • Jumping is considered as a suitable way for realizing fast locomotion on the ground. As for the issue of developing mobile robots that can jump up and forward enough for accomplishing useful missions, this paper first introduces two types of jumping principles that are found in biological animals or insects. We also present how the principles are applied to several jumping robot examples that include outcomes for the past a few years and also our recent one. Design ideas and features of the robots are explained and compared in order to discuss important issues and guidelines for the design of jumping robots.

Kinematic Parameter Optimization of Jumping Robot Using Energy Conversion of Elastic Body (탄성체의 에너지 변환을 이용한 점프 로봇의 기구변수 최적화)

  • Choi, JaeNeung;Lee, Sangho;Jeong, Kyungmin;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • Various jumping robot platforms have been developed to carry out missions such as rescues, explorations, or inspections of dangerous environments. We suggested a jumping robot platform using energy conversion of the elastic body like the bar of a pole vault, which is the main part in which elastic force occurs. The compliant link was optimized by an optimization method based on Taguchi methodology, and the robot's leaping ability was improved. Among the parameters, the length, width, and thickness of the link were selected as design variables first while the others were fixed. The level of the design variables was settled, and an orthogonal array about its combination was made. In the experiment, dynamic simulations were conducted using the DAFUL program, and response table and sensitivity analyses were performed. We found optimized values through a level average analysis and sensitivity analysis. As a result, the maximum leaping height of the optimized robot increased by more than 6.2% compared to the initial one, and these data will be used to design a new robot.