• Title/Summary/Keyword: Journal surface

Search Result 61,848, Processing Time 0.084 seconds

The effect of cavity wall property on the shear bond strength test using iris method (Iris 법을 이용한 전단접착강도 측정에서 와동벽의 영향)

  • Kim, Dong-Hwan;Bae, Ji-Hyun;Cho, Byeong-Hoon;Lee, In-Bog;Baek, Seung-Ho;Ryu, Hyun-Mi;Son, Ho-Hyun;Um, Chung-Moon;Kwon, Hyuck-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.2
    • /
    • pp.170-176
    • /
    • 2004
  • Objectives : In the unique metal iris method. the developing interfacial gap at the cavity floor resulting from the cavity wall property during polymerizing composite resin might affect the nominal shear bond strength values. The aim of this study is to evaluate that the iris method reduces the cohesive failure in the substrates and the cavity wall property effects on the shear bond strength tests using iris method. Materials and Methods : The occlusal dentin of 64 extracted human molars were randomly divided into 4 groups to simulate two different levels of cavity wall property (metal and dentin iris) and two different materials ($ONE-STEP^{\circledR}$ and $ALL-BOND^{\circledR}$ 2) for each wall property. After positioning the iris on the dentin surface. composite resin was packed and light-cured. After 24 hours the shear bond strength was measured at a crosshead speed of 0.5 mm/min. Fracture analysis was performed using a microscope and SEM. The data was analyzed statistically by a two-way ANOV A and t-test. Results : The shear bond strength with metal iris was significant higher than those with dentin iris (p=0.034). Using $ONE-STEP^{\circledR}$, the shear bond strength with metal iris was significant higher than those with dentin iris (p=0.005), but not in $ALL-BOND^{\circledR}$ 2 (p=0.774). The incidence of cohesive failure was very lower than other shear bond strength tests that did not use iris method. Conclusions:The iris method may significantly reduce the cohesive failures in the substrates. According to the bonding agent systems. the shear bond strength was affected by the cavity wall property.

EFFECT OF FILM THICKNESS OF RESIN CEMENT ON BONDING EFFICIENCY IN INDIRECT COMPOSITE RESTORATION (레진 시멘트의 film thickness가 간접 복합 레진 수복물의 접착 효율에 미치는 영향에 관한 연구)

  • Lee, Sang-Hyuck;Choi, Gi-Woon;Choi, Kyung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.69-79
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of film thickness of various resin cements on bonding efficiency in indirect composite restoration by measurement of microtensile bond strength, polymerization shrinkage, flexural strength and modulus, fractographic FE-SEM analysis. Experimental groups were divided according to film thickness (< $50\;{\mu}m$-control, $50\;{\mu}m$-T50, $100\;{\mu}m$-T100, $150\;{\mu}m$-T150) using composite- based resin cements (Variolink II, Duo-Link) and adhesive-based resin cements (Panavia F, Rely X Unicem). The data was analyzed using ANOVA and Duncan's multiple comparison test (p < 0.05). The results were as follows ; 1. Variolink II showed higher microtensile bond strength than that of adhesive-based resin cements in all film thickness (p < 0.05) but Duo-Link did not show significant difference except control group (p > 0.05). 2. Microtensile bond strength of composite-based resin cements were decreased significantly according to increasing film thickness (p < 0.05) but adhesive-based resin cements did not show significant difference among film thickness (p > 0.05). 3. Panavia F showed significantly lower polymerization shrinkage than other resin cements (p < 0.05). 4. Composite-based resin cements showed significantly higher flexural strength and modulus than adhesive-based resin cements (p < 0.05). 5. FE-SEM examination showed uniform adhesive layer and well developed resin tags in composite-based resin cements but unclear adhesive layer and poorly developed resin tags in adhesive-based resin cements. In debonded surface examination, composite-based resin cements showed mixed failures but adhesive-based resin cements showed adhesive failures.

MICROLEAKAGE OF COMPOSITE RESIN RESTORATION ACCORDING TO THE NUMBER OF THERMOCYCLING (열순환 횟수에 따른 복합레진의 미세누출)

  • Kim, Chang-Youn;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • Present tooth bonding system can be categorized into total etching bonding system (TE) and self-etching boding system (SE) based on their way of smear layer treatment. The purposes of this study were to compare the effectiveness between these two systems and to evaluate the effect of number of themocycling on microleakage of class V composite resin restorations. Total forty class V cavities were prepared on the single-rooted bovine teeth and were randomly divided into four experimental groups: two kinds of bonding system and another two kinds of thermocycling groups. Half of the cavities were filed with Z250 following the use of TE system, Single Bond and another twenty cavities were filled with Metafil and AQ Bond, SE system. All composite restoratives were cured using light curing unit (XL2500, 3M ESPE, St. Paul, MN, USA) for 40 seconds with a light intensity of $600mW/cm^2$. Teeth were stored in distilled water for one day at room temperature and were finished and polished with Sof-Lex system. Half of teeth were thermocycled 500 times and the other half were thermocycled 5,000 times between $5^{\circ}C$ and $55^{\circ}C$ for 30 second at each temperature. Teeth were isolated with two layers of nail varnish except the restoration surface and 1 mm surrounding margins. Electrical conductivity (${\mu}A$) was recorded in distilled water by electrochemical method. Microleakage scores were compared and analyzed using two-way ANOVA at 95% level. From this study, following results were obtained: There was no interaction between variables of bonding system and number of thermocycling (p = 0.485). Microleakage was not affected by the number of thermocycling either (p = 0.814). However, Composite restoration of Metafil and AQ Bond, SE bond system showed less microleakage than composite restoration of Z250 and Single Bond, TE bond system (p = 0.005).

Control of Powdery Mildew by Foliar Application of a Suspension of Cheonggukjang (청국장 현탁액 오이 엽면처리에 의한 흰가루병 방제효과)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Jee, Hyeong-Jin;Kwon, Jin-Hyeuk;Kim, Seuk-Chul
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.58-66
    • /
    • 2015
  • This study was conducted to evaluate control efficacy of a fermented food 'Cheonggukjang' against cucumber powdery mildew caused by Sphaerotheca fuliginea in greenhouse. Sterilized Daepung beans were inoculated with the rice straw as natural inoculum and then incubated for 72 hrs at $42^{\circ}C$ in the household cheonggkjang maker. After 72 hrs of cheonggukjang fermentation, white zymogens were grown on the surface of a sterile Daepung beans. The pH of the 72 hrs fermented soybean was not significantly changed and electrical conductivity was found to increase by about 2 times than before fermentation. The population density of soybean zymogen showed a peak of growth at 60 hrs after fermentation and the concentration of zymogen was $8.2{\times}10^7cfu/ml$. Soybean zymogen form of the colony was divided into three kinds of bacteria and a white and a large colony (WL) was predominant bacteria among those up to 60 hrs of fermentation. To control the cucumber powdery mildew, diluted solutions of cheonggukjang was applied from 6.0% to 30.0% on cucumber leaves and they showed injury symptoms on cucumber leaves in more than 15% of them. However, more than 6.0% diluted cheonggukjang solutions showed more than 77.8% control effect of cucumber powdery mildew at 15 days after treatment. The fermented bacteria of Chenggukjang were well established in the cucumber leaf area at 15 days after treatment. The antifungal activity of 10% diluted cheonggukjang solutions was excellent for four species of plant fungal pathogens, Colletotrichum gloeosporioides, Sclerotinia cepivorum, Rhizoctonia sloani and Phytophthora capsici in the dual culture test. Results indicated that foliar application of Cheonggukjang solution could be used for the control of powdery mildews occurring on organically cultivated cucumber.

Swelling and Mechanical Property Change of Shale and Sandstone in Supercritical CO2 (초임계 CO2에 의한 셰일 및 사암의 물성변화 및 스웰링에 관한 연구)

  • Choi, Chae-Soon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.266-275
    • /
    • 2012
  • In this study, a method is devised to implement a supercritical $CO_2$ ($scCO_2$) injection environment on a laboratory scale and to investigate the effects of $scCO_2$ on the properties of rock specimens. Specimens of shale and sandstone normally constituting the cap rock and reservoir rock, respectively, were kept in a laboratory reactor chamber with $scCO_2$ for two weeks. From this stage, a chemical reaction between rock surface and the $scCO_2$ was induced. The effect of saline water was also investigated by comparing three conditions ($scCO_2$-rock, $scCO_2-H_2O$-rock and $scCO_2$-brine(1M)-rock). Finally, we checked the changes in the properties before and after the reaction by destructive and nondestructive testing procedures. The swelling of shale was a main concern in this case. The experimental results suggested that $scCO_2$ has a greater effect on the swelling of the shale than pure water and brine. It was also observed that the largest swelling displacement of shale occurred after a reaction with the $H_2O-scCO_2$ solution. The results of a series of the destructive and nondestructive tests indicate that although each of the property changes of the rock differed depending on the reaction conditions, the $H_2O-scCO_2$ solution had the greatest effect. In this study, shale was highly sensitive to the reaction conditions. These results provide fundamental information pertaining to the stability of $CO_2$ storage sites due to physical and chemical reactions between the rocks in these sites and $scCO_2$.

Convenient Nucleic Acid Detection for Tomato spotted wilt virus: Virion Captured/RT-PCR (VC/RT-PCR) (Tomato spotted wilt virus를 위한 간편한 식물바이러스 핵산진단법: Virion Captured/RT-PCR (VC/RT-PCR))

  • Cho Jeom-Deog;Kim Jeong-Soo;Kim Hyun-Ran;Chung Bong-Nam;Ryu Ki-Hyun
    • Research in Plant Disease
    • /
    • v.12 no.2
    • /
    • pp.139-143
    • /
    • 2006
  • Virion captured reverse transcription polymerase chain reaction (VC/RT-PCR) could detect plant virus quickly and accurately. In the VC/RT-PCR, no antibody is needed unlike immuno-captured RT-PCR (IC/RT-PCR) which had been improved method of RT-PCR for plant viruses, and virus nucleic acids can be obtained easily within 30minutes by property of polypropylene PCR tube which is hold and immobilized viral particles on its surface. For the virion capture of Tomato spotted wilt virus (TSWV), the extraction buffer was tested. The optimum macerating buffer for TSWV was 0.01M potassium phosphate buffer, pH 7.0, containing 0.5% sodium sulfite. The viral crude sap was incubated for 30 min at $4^{\circ}C$. The virions in the PCR tubes were washed two times with 0.01M PBS containing 0.05% Tween-20. The washed virions were treated at $95^{\circ}C$ immediately for 1 min containing RNase free water and chilled quickly in the ice. Disclosed virions' RNAs by heat treatment were used for RT-PCR. Dilution end point of $10^{-5}$ from plant's crude sap infected with TSWV showed relatively higher detection sensitivity for VC/RT-PCR. During multiple detection using two or more primers, interference was arisen by interactions between primer-primer and plant species. The result of multiplex RT-PCR was influenced by combinations of primers and the kind of plant, and the optimum extraction buffer for the multiplex detection by VC/RT-PCR should be developed.

Can We Hear the Shape of a Noise Source\ulcorner (소음원의 모양을 들어서 상상할 수 있을까\ulcorner)

  • Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.586-603
    • /
    • 2004
  • One of the subtle problems that make noise control difficult for engineers is “the invisibility of noise or sound.” The visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical or numerical means to visualize the sound field have been attempted and as a result, a great deal of progress has been accomplished, for example in the field of visualization of turbulent noise. However, most of the numerical methods are not quite ready to be applied practically to noise control issues. In the meantime, fast progress has made it possible instrumentally by using multiple microphones and fast signal processing systems, although these systems are not perfect but are useful. The state of the art system is recently available but still has many problematic issues : for example, how we can implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently it is often difficult to determine the origin of the noise and the spatial shape of noise, as highlighted in the title. The first part of this paper introduces a brief history, which is associated with “sound visualization,” from Leonardo da Vinci's famous drawing on vortex street (Fig. 1) to modern acoustic holography and what has been accomplished by a line or surface array. The second part introduces the difficulties and the recent studies. These include de-Dopplerization and do-reverberation methods. The former is essential for visualizing a moving noise source, such as cars or trains. The latter relates to what produces noise in a room or closed space. Another mar issue associated this sound/noise visualization is whether or not Ivecan distinguish mutual dependence of noise in space : for example, we are asked to answer the question, “Can we see two birds singing or one bird with two beaks?"

A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized by a Modified Polyol Process (수정된 폴리올 방법을 적용하여 합성한 PtM 촉매들의 산소환원반응성 연구)

  • Yang, Jongwon;Hyun, Kyuwhan;Chu, Cheunho;Kwon, Yongchai
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • In this research, we evaluated the performance and characteristics of carbon supported PtM (M = Ni and Y) alloy catalysts (PtM/Cs) synthesized by a modified polyol method. With the PtM/Cs employed as a catalyst for the oxygen reduction reaction (ORR) of cathodes in proton exchange membrane fuel cells (PEMFCs), their catalytic and ORR activities and electrical performance were investigated and compared with those of commercial Pt/C. Their particle sizes, particle distributions and electrochemically active surface areas (EAS) were measured by TEM and cyclic voltammetry (CV), while their ORR activity and electrical performance were explored using linear sweeping voltammetries with rotating disk electrodes and rotating ring-disk electrodes as well as PEMFC single cell tests. TEM and CV measurements show that PtM/Cs have the compatible particle size and EAS with Pt/C. When it comes to ORR activity, PtM/C showed the equivalent or better half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production(%) to or than commerical Pt/C. Based on results gained by the three electrode tests, when the PEMFC single cell tests were carried out, the current density measured at 0.6 V and maximum power density of PEMFC single cell adopting PtM/C catalysts were better than those adopting Pt/C catalyst. It is therefore concluded that PtM/C catalysts synthesized by modified polyol can result in the equivalent or better ORR catalytic capability and PEMFC performance to or than commercial Pt/C catalyst.

Research Trend of Biomass-Derived Engineering Plastics (바이오매스 기반 엔지니어링 플라스틱 연구 동향)

  • Jeon, Hyeonyeol;Koo, Jun Mo;Park, Seul-A;Kim, Seon-Mi;Jegal, Jonggeon;Cha, Hyun Gil;Oh, Dongyeop X.;Hwang, Sung Yeon;Park, Jeyoung
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.115-124
    • /
    • 2020
  • Sustainable plastics can be mainly categorized into (1) biodegradable plastics decomposed into water and carbon dioxide after use, and (2) biomass-derived plastics possessing the carbon neutrality by utilizing raw materials converted from atmospheric carbon dioxide to biomass. Recently, biomass-derived engineering plastics (EP) and natural nanofiber-reinforced nanocomposites are emerging as a new direction of the industry. In addition to the eco-friendliness of natural resources, these materials are competitive over petroleum-based plastics in the high value-added plastics market. Polyesters and polycarbonates synthesized from isosorbide and 2,5-furandicarboxylic acid, which are representative biomass-derived monomers, are at the forefront of industrialization due to their higher transparency, mechanical properties, thermal stability, and gas barrier properties. Moreover, isosorbide has potential to be applied to super EP material with continuous service temperature over 150 ℃. In situ polymerization utilizing surface hydrophilicity and multi-functionality of natural nanofibers such as nanocellulose and nanochitin achieves remarkable improvements of mechanical properties with the minimal dose of nanofillers. Biomass-derived tough-plastics covered in this review are expected to replace petroleum-based plastics by satisfying the carbon neutrality required by the environment, the high functionality by the consumer, and the accessibility by the industry.

Effect of cavity shape, bond quality and volume on dentin bond strength (와동의 형태, 접착층의 성숙도, 및 와동의 부피가 상아질 접착력에 미치는 영향)

  • Lee, Hyo-Jin;Kim, Jong-Soon;Lee, Shin-Jae;Lim, Bum-Soon;Baek, Seung-Ho;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.6
    • /
    • pp.450-460
    • /
    • 2005
  • The aim of this study was to evaluate the effect of cavity shape, bond quality of bonding agent and volume of resin composite on shrinkage stress developed at the cavity floor. This was done by measuring the shear bond strength with respect to iris materials (cavity shape , adhesive-coated dentin as a high C-factor and Teflon-coated metal as a low C-factor), bonding agents (bond quality: $Scotchbond^{TM}$ Multi-purpose and Xeno III) and iris hole diameters (volume; 1mm or 3mm in $diameter{\times}1.5mm$ in thickness). Ninety-six molars were randomly divided into 8 groups ($2{\times}2{\times}2$ experimental setup). In order to simulate a Class I cavity, shear bond strength was measured on the flat occlusal dentin surface with irises. The iris hole was filled with Z250 restorative resin composite in a bulk-filling manner. The data was analyzed using three-way ANOVA and the Tukey test. Fracture mode analysis was also done When the cavity had high C-factor, good bond quality and large volume, the bond strength decreased significantly The volume of resin composite restricted within the well-bonded cavity walls is also be suggested to be included in the concept of C-factor, as well as the cavity shape and bond quality. Since the bond quality and volume can exaggerate the effect of cavity shape on the shrinkage stress developed at the resin-dentin bond, resin composites must be filled in a method, which minimizes the volume that can increase the C-factor.