• 제목/요약/키워드: Journal Bearing Wear

검색결과 197건 처리시간 0.02초

Experimental Investigation of Porous Bearings Under Different Lubricant and Lubricating Conditions

  • Durak, Ertugrul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1276-1286
    • /
    • 2003
  • The performance of porous bearing under different lubricants and lubricating conditions was experimentally investigated in this study. In order to carry out the experiments, a new test rig was designed to determine the tribological properties of based sintered bronze journal bearings that were manufactured by powder metallurgy (P/M) techniques. To determine the effects of lubricating conditions with and without oil supplement (OS) on the tribological characteristics of these bearings under static loading and periodic loadings, some experiments were carried out using different lubricants. In the tests, pure base oil (SAE 20W50), two fully formulated commercial engine oils (SAE20W50) and lubricating oils with commercial additive concentration ratio of 3% were used. The worn surfaces of test bearings were examined using optical microscopy. Experimental results showed that the change in friction coefficient was more stable and in smaller magnitude under static loading than that of periodic loading. In addition, the friction coefficient and the wear rate conducted with base oil resulted in higher values than those of fully formulated oils with and without OS lubricating conditions. The experimental results obtained in this study indicated that the correct selection of lubricant and suitable running conditions were very important on the tribological characteristics of porous bearings.

The Friction Characteristics of the Journal Bearing in the Refrigerant Compressor

  • Cho, Ihn Sung;Baek, Il Hyun;Oh, Seok Hyung;Jung, Jae Youn
    • KSTLE International Journal
    • /
    • 제1권2호
    • /
    • pp.113-117
    • /
    • 2000
  • The rotary-vane compressor has become one of the most successful types of compressors because of its mechanical reliability, compactness, and adaptability to moderately high-speed operation in virtually an unlimited range of sizes. However recently, the depletion of the ozone layer due to the current refrigerant(R22) has been getting worse, and it is one of the world's pressing issues. In this paper, we will discuss the use of R410a in the compressor of a room air-conditioner as an alternative refrigerant and air-conditioning system to R22, since R410a has greater refrigerant characteristics than R22. Miniaturization of the rotary compressor for the new refrigerant and air-conditioning system is also possible, which reduces the prime cost of production, hence R410a is naturally a better refrigerant. But to apply the new HFC refrigerant system in refrigeration and air-conditioning systems, a significant redesign of the current refrigerant system is also required, because as the refrigeration changes, lubrication characteristics vary. Close attention must be paid to friction force and energy loss due to friction and wear at many sliding areas.

  • PDF

쌍롤법에 의한 Al-Sn합금 Strip의 제조 및 특성에 관한 연구 (A Stud on the Fabrication and Characteristics of Al-Sn Alloy Strips by Twin-Roll Process)

  • 이정근;주대헌;김명호
    • 한국주조공학회지
    • /
    • 제22권4호
    • /
    • pp.174-183
    • /
    • 2002
  • Twin-roll process is a relatively new continuous casting process which can produce high-quality strip products directly, and solidification rate can reach $10^3$ to $10^4$ K/s, leading to fine and uniform microstructures with enhanced mechanical properties. The strip casting condition for producing fine Al-Sn alloy strip was obtained experimentally, and defects appearing on the strip was examined. Crack formation and surface quality of the strip was found to depend mainly on process parameters such as melt temperature, roller gap and rolling speed. Sn structure of network type was observed in Al-20Sn and Al-40Sn alloy strips, and cell spacing of Al-40Sn alloy was smaller than that of Al-20Sn. Banding strength of the heat treated specimens increased with increasing of soaking time and temperature, and bonding strength of Al-20Sn alloy was more superior than that of Al-40Sn alloy. However wear resistance of Al-40Sn alloy contained large amount of soft Sn which possess good anti-friction characteristics was superior than that of Al-20Sn alloy.

기계적 임피던스법에 의한 박용디젤기관 추진축계의 강제감쇠종진동 계산에 관한 연구 (A study on the calculation of forced axial vibration with damping for the marine diesel engine shafting by the mechanical impedance method)

  • 박현호;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.51-60
    • /
    • 1987
  • Recently, the problem of the axial vibration for the marine diesel engine shafting has become important due to the increased exciting forces resulting from high supercharging and large output, and the reduced natural frequencies resulting from long stroke and show speed. The effects of the axial vibration on the propulsion shafting induce cracks of the connecting point of crankpin and crankarm, the severe wear of thrust bearing, the fatigue failure of each fixing bolt and jointed parts, the hull and local hull vibrations, and also the wear and the noise due to intense hammering phenomena of thrust collar. Therefore, each classification society requires the calculation of natural frequencies and their amplitudes and also measurements of the forced damped axial vibration. At present, the technical and theoretical level is at the stage of estimating the resonant points and their maximum displacements, but the estimated displacements of the resonant points are not so reliable as the torsional one. In this study, induced stresses and amplitudes of the forced damped axial vibration are calculated. For this purpose, the equation of forced axial vibration with damping for the propulsion shafting is derived and its steady-state response is calculated by the mechanical impedance method. A computer program for above calculations is developed. The measured values are analyzed and the calculated results are compared with the measured ones. They show fairly good agreements and the reliability of developed program is confirmed.

  • PDF

내연기관용 무연 핀부싱의 마찰특성에 관한 실험적 연구 (Experimental Study on Friction Characteristics of Pb-free Pin Bushing for an Internal Combustion Engine)

  • 김청균;오경석
    • Tribology and Lubricants
    • /
    • 제23권6호
    • /
    • pp.306-311
    • /
    • 2007
  • This paper presents the friction characteristics of pb-fres pin bushing bearings for an automotive gasoline engine. The external load is 100 N to 600 N and the speed of the pin bushing bearing is 1000 rpm to 3000 rpm against the rubbing surfaces. And the contact modes of rubbing surfaces between a piston pin and a pb-free pin bushing specimen are a dry friction, an oil lubricated friction and a mixed friction that is starved by a lack of engine oil. Two influential factors of a contact rubbing modes and a material property are very important parameters on the tribological performance of a friction characteristic between a piston pin and a pb-free pin bushing. The experimental result shows that the pin bushing speed of 2000 rpm shows a typical oil film lubricated sliding contact mode in which means that as the applied load is increased, the friction loss is increasing. But other contact mode depending on the speed and the load may affect to the fiction coefficient without a regular and uniform trend. In summary, the oil lubricated rubbing surface definitely decreases a running-in period in short and increase oil film stiffness, and this may leads the reduction of a friction loss.

Study on transient performance of tilting-pad thrust bearings in nuclear pump considering fluid-structure interaction

  • Qiang Li;Bin Li;Xiuwei Li;Quntao Xie;Qinglei Liu;Weiwei Xu
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2325-2334
    • /
    • 2023
  • To study the lubrication performance of tilting-pad thrust bearing (TPTBs) during start-up in nuclear pump, a hydrodynamic lubrication model of TPTBs was established based on the computational fluid dynamics (CFD) method and the fluid-structure interaction (FSI) technique. Further, a mesh motion algorithm for the transient calculation of thrust bearings was developed based on the user defined function (UDF). The result demonstrated that minimum film thickness increases first and then decreases with the rotational speed under start-up condition. The influence of pad tilt on minimum film thickness is greater than that of collar movement at low speed, and the establishment of dynamic pressure mainly depends on pad tilt and minimum film thickness increases. As the increase of rotational speed, the influence of pad tilt was abated, where the influence of the moving of the collar dominated gradually, and minimum film thickness decreases. For TPTBs, the circumferential angle of the pad is always greater than the radial angle. When the rotational speed is constant, the change rate of radial angle is greater than that of circumferential angle with the increase of loading forces. This study can provide reference for improving bearing wear resistance.

플래너 밀러 스핀들의 재제조를 위한 최적설계 개선안에 관한 연구 (A Study on the Improvement of Optimal Design for the Re-Manufacturing of Planner Miller Spindle)

  • 이현준;김진우;김현수;이성원;공석환;정원지
    • 한국산업융합학회 논문집
    • /
    • 제25권6_2호
    • /
    • pp.1119-1125
    • /
    • 2022
  • The depletion of resources and waste disposal caused by the continuous development of industry have emphasized the need to reduce consumption and production, recycle and reuse, and the importance of remanufacturing has increased in recent years. The spindle part of the aging planner miller, which is currently being remanufactured, is one of the factors that has the greatest impact on the performance of the machine tool. When designing the spindle part of the spindle shaft, there are considerations such as the configuration size bearing performance of the main shaft, but the diameter of the main shaft, the dangerous speed bearing, and the arrangement that affect the machining accuracy should be basically considered. As such, various studies have been conducted on the design of machine tool spindle spindles, but research on the reverse engineering of existing aging machine tool spindle spindles is poor. Reverse engineering is designing in the direction of improving performance by extracting specifications from already finished products, and first scanning the reverse engineered object through a 3D scanner, 3D modeling is performed based on the collected data, and then the process of deriving improvement plans by reverberating to improve performance by identifying wear and damage conditions is followed. Therefore, in this study, the purpose of this study is to provide data on reverse engineering by deriving improvement plans through optimal design for the bearing position of the aging planar Miller spindle spindle using central composite programming.

사각형 딤플로 Surface Texturing한 경사진 Slider 베어링의 윤활해석 (Lubrication Analysis of Surface-Textured Inclined Slider Bearing with Rectangular Dimples)

  • 박태조;장인규
    • Tribology and Lubricants
    • /
    • 제38권5호
    • /
    • pp.191-198
    • /
    • 2022
  • With the world's fast expanding energy usage comes a slew of new issues. Because one-third of energy is lost in overcoming friction, tremendous effort is being directed into minimizing friction. Surface texturing is the latest surface treatment technology that uses grooves and dimples on the friction surface of the machine to significantly reduce friction and improve wear resistance. Despite the fact that many studies on this issue have been conducted, most of them focused on parallel surfaces, with relatively few cases of converging films, as in most sliding bearings. This study investigated the lubrication performance of surface-textured inclined slider bearings. We analyzed the continuity and Navier-Stokes equations using a commercial computational fluid dynamics code, FLUENT. The results show the pressure and velocity distributions and the lubrication performance according to the number and orientation of rectangular dimples. Partial texturing somewhat improves the lubrication performance of inclined slider bearings. The number of dimples with the maximum load-carrying capacity (LCC) and minimum friction is determined. When the major axis of the dimple is arranged in the sliding direction, the LCC and friction reduction are maximized. However, full texturing significantly reduces the LCC of the slider bearing and increases the flow rate. The results have the potential to improve the lubrication performance of various sliding bearings, but further research is required.

나노윤활유를 사용하는 평행 슬라이더 베어링의 윤활해석 (Lubrication Analysis of Parallel Slider Bearing with Nanolubricant)

  • 박태조;강정국
    • Tribology and Lubricants
    • /
    • 제39권3호
    • /
    • pp.87-93
    • /
    • 2023
  • Nanofluids are dispersions of particles smaller than 100 nm (nanoparticles) in base fluids. They exhibit high thermal conductivity and are mainly applied in cooling applications. Nanolubricants use nanoparticles in base oils as lubricant additives, and have recently started gathering increased attention owing to their potential to improve the tribological and thermal performances of various machinery. Nanolubricants reduce friction and wear, mainly by the action of nanoparticles; however, only a few studies have considered the rheological properties of lubricants. In this study, we adopt a parallel slider bearing model that does not generate geometrical wedge effects, and conduct thermohydrodynamic (THD) analyses to evaluate the effect of higher thermal conductivity and viscosity, which are the main rheological properties of nanolubricants, on the lubrication performances. We use a commercial computational fluid dynamics code, FLUENT, to numerically analyze the continuity, Navier-Stokes, energy equations with temperature-viscosity-density relations, and thermal conductivity and viscosity models of the nanolubricant. The results show the temperature and pressure distributions, load-carrying capacity (LCC), and friction force for three film-temperature boundary conditions (FTBCs). The effects of the higher thermal conductivity and viscosity of the nanolubricant on the LCC and friction force differ significantly, according to the FTBC. The thermal conductivity increases with temperature, improving the cooling performance, reducing LCC, and slightly increasing the friction. The increase in viscosity increases both the LCC and friction. The analysis method in this study can be applied to develop nanolubricants that can improve the tribological and cooling performances of various equipment; however, additional research is required on this topic.

금속 임플란트 소재의 내마모성 향상을 위하여 적용되는 질소 이온주입 및 이온도금법의 한계 (Limitation of Nitrogen ion Implantation and Ionplating Techniques Applied for Improvement of Wear Resistance of Metallic Implant Materials)

  • 김철생
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권2호
    • /
    • pp.157-163
    • /
    • 2004
  • 금속 임플란트 재료들의 마모저항을 향상시키기 위하여 질소 이온주입 및 이온도금 기술을 적용하였다. 질소 이온주입 된 초내식성 스테인리스강(S.S.S)의 마모이온용출 특성을 S.S.S, 316L SS, TiN코팅된 316S SS와 비교 평가하기 위하여 탄소로 원자흡수분광분석기를 이용하여 시편들로부터 마모용출된 Cr과 Ni 이온량을 측정하였다. 또한, 저온아크증착법을 이용하여 TiN, ZrN, TiCN코팅된 Ti(Grade 2)원반의 마모저항을 비교하였고, 질소이온주입 및 질화물 코팅된 표면충의 화학적 조성은 SAES(scanning Auger electron spectroscopy)를 이용하여 분석하였다. 질소 이온주입된 S.S.S 표면으로부터 마모에 의하여 용출된 Cr과 Ni 이온량은 표면처리하지 않은 스테인리스강들에 비하여 크게 감소하였다 그러나 인공고관절에 걸리는 하중조건 하에서 실행된 마모이온용출실험에서 이온에너지 100 KeV로 질소이온 주입된 표면층은 20만회 내에서 쉽게 제거되었다. 질화물 코팅된 Ti 시편들의 마모저항도 크게 향상되었고, 그 마모특성은 코팅층의 화학적 조성에 따라 크게 차이가 났다. 코팅두께 3Um의 코팅시편들 중 TiCN 코팅된 티타늄이 가장 높은 내마모 특성을 보였으나 같은 하중조건 하에서 disk(Ti)-on-disk 마모실험에서 그 질화물 코팅면들의 마모 무게감 소비는 1만회 아래에서 모두 Ti의 마모비와 유사하게 전환되었다. 본 실험으로부터 얻어진 연구결과에 의하면, 100 KeV 질소이온주입 및 두께 3$\mu\textrm{m}$의 길화코팅된 표면층의 경우 표면 경화충의 깊이가 충분치 않아 높은 하중을 받는 임플란트의 마찰부위에 사용하기에는 한계가 있음을 보였다.